欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

标签:Presto

Alluxio

Alluxio Local Cache 加速 Presto 查询在 Uber 的应用

Alluxio Local Cache 加速 Presto 查询在 Uber 的应用
背景如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:过往记忆大数据在 Uber,数据影响着每一个决定。Presto 是推动 Uber 各种数据分析的核心引擎之一。例如,运营团队在仪表盘等服务中大量使用 Presto;Uber Eats 和营销团队依靠这些查询的结果来决定价格。此外, Presto 还被用于 Uber 的合规部门、增长营销部

w397090770   5个月前 (11-14) 329℃ 0评论1喜欢

Presto

图文介绍 Presto + Velox 整合

图文介绍 Presto + Velox 整合
过去十年,存储的速度从 50MB/s(HDD)提升到 16GB/s(NvMe);网络的速度从 1Gbps 提升到 100Gbps;但是 CPU 的主频从 2010 年的 3GHz 到现在基本不变,CPU 主频是目前数据分析的重要瓶颈。为了解决这个问题,越来越多的向量化执行引擎被开发出来。比如数砖的 Photon 、ClickHouse、Apache Doris、Intel 的 Gazelle 以及 Facebook 的 Velox(参见 《Velox 介绍

w397090770   6个月前 (09-29) 738℃ 0评论2喜欢

Presto

Velox 介绍:一个开源的统一执行引擎

Velox 介绍:一个开源的统一执行引擎
如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:过往记忆大数据Velox 利用了大量的运行时优化,例如过滤器和连接的重新排序(conjunct reordering)、数组和基于哈希的聚合和连接的 key 标准化、动态过滤器下推(dynamic filter pushdown)和自适应列预取(adaptive column prefetching)。考虑到从传入的数据批次中提取的

w397090770   7个月前 (09-05) 1035℃ 0评论2喜欢

Presto

Presto 里面如何把 array 或 Map 里面的元素由行转成列

Presto 里面如何把 array 或 Map 里面的元素由行转成列
在 Spark 或 Hive 中,我们可以使用 LATERAL VIEW + EXPLODE 或 POSEXPLODE 将 array 或者 map 里面的数据由行转成列,这个操作在数据分析里面很常见。比如我们有以下表:[code lang="sql"]CREATE TABLE `default`.`iteblog_explode` ( `id` INT, `items` ARRAY<STRING>)[/code]表里面的数据如下:[code lang="sql"]spark-sql> SELECT * FROM iteblog_explode;1 ["iteblog.co

w397090770   8个月前 (08-08) 895℃ 0评论6喜欢

Presto

Tardigrade:Trino 解决 ETL 场景的方案

Tardigrade:Trino 解决 ETL 场景的方案
Presto 在 Facebook 的诞生最开始是为了填补当时 Facebook 内部实时查询和 ETL 处理之间的空白。Presto 的核心目标就是提供交互式查询,也就是我们常说的 Ad-Hoc Query,很多公司都使用它作为 OLAP 计算引擎。但是随着近年来业务场景越来越复杂,除了交互式查询场景,很多公司也需要批处理;但是 Presto 作为一个 MPP 计算引擎,将一个 MPP 体

w397090770   10个月前 (06-23) 915℃ 0评论2喜欢

Presto

Presto multi-master Coordinator 简介

Presto multi-master Coordinator 简介
背景Presto 的架构最初只支持一个 coordinator 和多个 workers。多年来,这种方法一直很有效,但也带来了一些新挑战。使用单个 coordinator,集群可以可靠地扩展到一定数量的 worker。但是运行复杂、多阶段查询的大集群可能会使供应不足的 coordinator 不堪重负,因此需要升级硬件来支持工作负载的增加。单个 coordinator 存在单点故障

zz~~   12个月前 (04-22) 520℃ 0评论1喜欢

Presto

Starburst 性能白皮书一 - Presto CBO 优化

Starburst 性能白皮书一 - Presto CBO 优化
Depending on the complexity of your SQL query there are many, often exponential, query plans that return the same result. However, the performance of each plan can vary drastically; taking only seconds to finish or days given the chosen plan.That places a significant burden on analysts who will then have to know how to write performant SQL. This problem gets worse as the complexity of questions and SQL queries increases. In the abse

w397090770   12个月前 (04-20) 360℃ 0评论1喜欢

Presto

Starburst 性能白皮书二 - Presto 基于 Connecter 的性能提升

Starburst 性能白皮书二 - Presto 基于 Connecter 的性能提升
Starburst provides connectors to the most popular data sources included in many of these connectors are a number of exclusive enhancements. Many of Starburst’s connectors when compared with open source Trino have enhanced extensions such as parallelism, pushdown and table statistics, that drastically improve the overall performance. Parallelism distributes query processing across workers, and uses many connections to the data source a

w397090770   12个月前 (04-15) 361℃ 0评论0喜欢

Presto

Starburst 性能白皮书三 - Presto Dynamic Filtering

Starburst 性能白皮书三 - Presto Dynamic Filtering
Dynamic filtering optimizations significantly improve the performance of queries with selective joins by avoiding reading of data that would be filtered by join condition. In this respect, dynamic filtering is similar to join pushdown discussed above, however it is the equivalent of inner join pushdown across data sources. As a consequence we derive the performance benefits associated with selective joins when performing federated queri

w397090770   12个月前 (04-15) 210℃ 0评论0喜欢

Presto

Presto 在 B 站的实践

Presto 在 B 站的实践
架构B站SQL On Hadoop 整体架构在介绍Presto在B站的实践之前,先从整体来看看SQL在B站的使用情况,在B站的离线平台,核心由三大计算引擎Presto、Spark、Hive以及分布式存储系统HDFS和调度系统Yarn组成。如下架构图所示,我们的ADHOC、BI、DQC以及数据探查等服务都是通过自研的Dispatcher路由服务来进行统一SQL调度,Dispatcher会结合查询

w397090770   12个月前 (04-14) 1167℃ 0评论2喜欢