欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:1048
  2. 浏览总数:13,939,118
  3. 评论:4138
  4. 分类目录:109 个
  5. 注册用户数:6990
  6. 最后更新:2019年8月18日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
开发爱好者社区:
bigdata_ai

标签:HBase

Flink

五年总结:过往记忆大数据公众号原创精选

五年总结:过往记忆大数据公众号原创精选
今年是我创建这个微信公众号的第五年,五年来,收获了6.8万粉丝。这个数字,在自媒体圈子,属于十八线小规模的那种,但是在纯技术圈,还是不错的成绩,我很欣慰。我花在这个号上面的时间挺多的。我平时下班比较晚,一般下班到家了,老婆带着孩子已经安睡了,我便轻手轻脚的拿出电脑,带上耳机,开始我一天的知识盘

w397090770   6天前 343℃ 0评论3喜欢

HBase

SHC:使用 Spark SQL 高效地读写 HBase

SHC:使用 Spark SQL 高效地读写 HBase
Apache Spark 和 Apache HBase 是两个使用比较广泛的大数据组件。很多场景需要使用 Spark 分析/查询 HBase 中的数据,而目前 Spark 内置是支持很多数据源的,其中就包括了 HBase,但是内置的读取数据源还是使用了 TableInputFormat 来读取 HBase 中的数据。这个 TableInputFormat 有一些缺点:一个 Task 里面只能启动一个 Scan 去 HBase 中读取数据;TableIn

w397090770   5个月前 (04-02) 4026℃ 5评论9喜欢

Hadoop

HBase 中加盐(Salting)之后的表如何读取:MapReduce 篇

HBase 中加盐(Salting)之后的表如何读取:MapReduce 篇
前两篇文章,《HBase 中加盐(Salting)之后的表如何读取:协处理器篇》 和 《HBase 中加盐(Salting)之后的表如何读取:Spark 篇》 分别介绍了两种方法读取加盐之后的 HBase 表。本文将介绍如何在 MapReduce 读取加盐之后的表。在 MapReduce 中也可以使用 《HBase 中加盐(Salting)之后的表如何读取:Spark 篇》 文章里面的 SaltRangeTableInputForm

w397090770   6个月前 (02-27) 1199℃ 0评论4喜欢

HBase

HBase 中加盐(Salting)之后的表如何读取:Spark 篇

HBase 中加盐(Salting)之后的表如何读取:Spark 篇
在 《HBase 中加盐(Salting)之后的表如何读取:协处理器篇》 文章中介绍了使用协处理器来查询加盐之后的表,本文将介绍第二种方法来实现相同的功能。我们知道,HBase 为我们提供了 hbase-mapreduce 工程包含了读取 HBase 表的 InputFormat、OutputFormat 等类。这个工程的描述如下:This module contains implementations of InputFormat, OutputFormat, Mapper

w397090770   6个月前 (02-26) 1739℃ 0评论6喜欢

HBase

HBase 中加盐(Salting)之后的表如何读取:协处理器篇

HBase 中加盐(Salting)之后的表如何读取:协处理器篇
在 《HBase Rowkey 设计指南》 文章中,我们介绍了避免数据热点的三种比较常见方法:加盐 - Salting哈希 - Hashing反转 - Reversing其中在加盐(Salting)的方法里面是这么描述的:给 Rowkey 分配一个随机前缀以使得它和之前排序不同。但是在 Rowkey 前面加了随机前缀,那么我们怎么将这些数据读出来呢?我将分三篇文章来介绍如何

w397090770   6个月前 (02-24) 1595℃ 0评论5喜欢

HBase

HBase 读流程解析与优化的最佳实践

HBase 读流程解析与优化的最佳实践
本文首先对 HBase 做简单的介绍,包括其整体架构、依赖组件、核心服务类的相关解析。再重点介绍 HBase 读取数据的流程分析,并根据此流程介绍如何在客户端以及服务端优化性能,同时结合有赞线上 HBase 集群的实际应用情况,将理论和实践结合,希望能给读者带来启发。如文章有纰漏请在下面留言,我们共同探讨共同学习。HBas

w397090770   6个月前 (02-20) 1859℃ 0评论3喜欢

HBase

HBase 协处理器入门及实战

HBase 协处理器入门及实战
HBase 和 MapReduce 有很高的集成,我们可以使用 MR 对存储在 HBase 中的数据进行分布式计算。但是在很多情况下,例如简单的加法计算或者聚合操作(求和、计数等),如果能够将这些计算推送到 RegionServer,这将大大减少服务器和客户的的数据通信开销,从而提高 HBase 的计算性能,这就是本文要介绍的协处理器(Coprocessors)。HBase

w397090770   6个月前 (02-17) 1815℃ 0评论2喜欢

HBase

HBase 入门之数据刷写(Memstore Flush)详细说明

HBase 入门之数据刷写(Memstore Flush)详细说明
接触过 HBase 的同学应该对 HBase 写数据的过程比较熟悉(不熟悉也没关系)。HBase 写数据(比如 put、delete)的时候,都是写 WAL(假设 WAL 没有被关闭) ,然后将数据写到一个称为 MemStore 的内存结构里面的,如下图:如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop但是,MemStore 毕竟是内存里

w397090770   7个月前 (01-13) 1398℃ 0评论16喜欢

HBase

HBase 是列式存储数据库吗

HBase 是列式存储数据库吗
在介绍 HBase 是不是列式存储数据库之前,我们先来了解一下什么是行式数据库和列式数据库。行式数据库和列式数据库在维基百科里面,对行式数据库和列式数据库的定义为:列式数据库是以列相关存储架构进行数据存储的数据库,主要适合于批量数据处理(OLAP)和即时查询。相对应的是行式数据库,数据以行相关的存储体

w397090770   7个月前 (01-08) 1588℃ 0评论16喜欢

HBase

为了让你更全面的了解Apache HBase,我们做了这本专刊

为了让你更全面的了解Apache HBase,我们做了这本专刊
Apache HBase是基于Hadoop构建的一个分布式的、可伸缩的海量数据存储系统。随着时间的推移,HBase目前不管是在国内还是国外都受到了非常大的欢迎,以下分别是近几年 Google 和百度关于 HBase 的搜索趋势:Google如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop大家可以看到,整体趋势是越来越

w397090770   8个月前 (01-05) 1888℃ 0评论15喜欢