欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据

标签:Spark 3.0

Spark

Apache Spark 3.0 是如何提高 SQL 工作负载的性能

Apache Spark 3.0 是如何提高 SQL 工作负载的性能
在几乎所有处理复杂数据的领域,Spark 已经迅速成为数据和分析生命周期团队的事实上的分布式计算框架。Spark 3.0 最受期待的特性之一是新的自适应查询执行框架(Adaptive Query Execution,AQE),该框架解决了许多 Spark SQL 工作负载遇到的问题。AQE 在2018年初由英特尔和百度组成的团队最早实现。AQE 最初是在 Spark 2.4 中引入的, Spark 3.0 做

w397090770   2个月前 (05-23) 401℃ 0评论2喜欢

Spark

Apache Spark 3.1 中 Structured Streaming 方面的改进

Apache Spark 3.1 中 Structured Streaming 方面的改进
Apache Spark 3.1.x 版本发布到现在已经过了两个多月了,这个版本继续保持使得 Spark 更快,更容易和更智能的目标,Spark 3.1 的主要目标如下:提升了 Python 的可用性;加强了 ANSI SQL 兼容性;加强了查询优化;Shuffle hash join 性能提升;History Server 支持 structured streaming更多详情请参见这里。在这篇博文中,我们总结了3.1版本中

w397090770   2个月前 (05-16) 312℃ 0评论2喜欢

Spark

唯品会 Apache Spark 3.0 升级之路

唯品会 Apache Spark 3.0 升级之路
导读.bordered th, .bordered td{text-align:left;}唯品会离线平台SPARK2.3.2无缝升级到SPARK3.0.1版本,完全做到了对用户透明,目前正按着既定方案进行升级,新的版本SPARK CORE/SQL/PySpark进行了优化和BugFix,并且Merge了SPARK vip 2.3.2 重要Patch,在性能和易用性上比旧版本都有较大提升。这篇文章介绍了我们升级SPARK过程中遇到的挑战和思考,

w397090770   4个月前 (04-05) 596℃ 0评论4喜欢

Spark

Apache Spark 3.1.1 版本发布,众多新特性

Apache Spark 3.1.1 版本发布,众多新特性
Apache Spark 3.1.1 版本于美国当地时间2021年3月2日正式发布,这个版本继续保持使得 Spark 更快,更容易和更智能的目标,Spark 3.1 的主要目标如下:提升了 Python 的可用性;加强了 ANSI SQL 兼容性;加强了查询优化;Shuffle hash join 性能提升;History Server 支持 structured streaming注意,由于技术上的原因,Apache Spark 没有发布 3.1.0 版

w397090770   5个月前 (03-03) 1241℃ 0评论6喜欢

Spark

图文理解 Spark 3.0 的动态分区裁剪优化

图文理解 Spark 3.0 的动态分区裁剪优化
Spark 3.0 为我们带来了许多令人期待的特性。动态分区裁剪(dynamic partition pruning)就是其中之一。本文将通过图文的形式来带大家理解什么是动态分区裁剪。Spark 中的静态分区裁剪在介绍动态分区裁剪之前,有必要对 Spark 中的静态分区裁剪进行介绍。在标准数据库术语中,裁剪意味着优化器将避免读取不包含我们正在查找的数

w397090770   7个月前 (01-06) 755℃ 0评论3喜欢

Data + AI Summit

这些未在 Spark SQL 文档中说明的优化措施,你知道吗?

这些未在 Spark SQL 文档中说明的优化措施,你知道吗?
​本文来自上周(2020-11-17至2020-11-19)举办的 Data + AI Summit 2020 (原 Spark+AI Summit),主题为《Spark SQL Beyond Official Documentation》的分享,作者 David Vrba,是 Socialbakers 的高级机器学习工程师。实现高效的 Spark 应用程序并获得最大的性能为目标,通常需要官方文档之外的知识。理解 Spark 的内部流程和特性有助于根据内部优化设计查询

w397090770   8个月前 (11-24) 763℃ 0评论3喜欢

Spark

Apache Spark 3.0 新功能最新分享

Apache Spark 3.0 新功能最新分享
本文资料来自2020年9月23日举办的 Apache Spark Bogotá 题为《Apache Spark 3.0: Overview of What’s New and Why Care》 的分享。如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoopApache Spark 3.0 继续坚持更快、更简单、更智能的目标,这个版本解决了3000多个 JIRAs。在这次演讲中,主要和 Bogota Spark 社区分享 Spark 3.0 的

w397090770   9个月前 (10-24) 560℃ 0评论2喜欢

Delta Lake

深入理解 Delta Lake 的 DML 实现原理 (Update, Delete, Merge)

深入理解 Delta Lake 的 DML 实现原理 (Update, Delete, Merge)
Delta Lake 支持 DML 命令,包括 DELETE, UPDATE, 以及 MERGE,这些命令简化了 CDC、审计、治理以及 GDPR/CCPA 工作流等业务场景。在这篇文章中,我们将演示如何使用这些 DML 命令,并会介绍这些命令的后背实现,同时也会介绍对应命令的一些性能调优技巧。Delta Lake: 基本原理如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信

w397090770   10个月前 (10-12) 728℃ 0评论0喜欢

Spark

Spark Join Hints 简介及使用

Spark Join Hints 简介及使用
当前 Spark 计算引擎能够利用一些统计信息选择合适的 Join 策略(关于 Spark 支持的 Join 策略可以参见每个 Spark 工程师都应该知道的五种 Join 策略),但是由于各种原因,比如统计信息缺失、统计信息不准确等原因,Spark 给我们选择的 Join 策略不是正确的,这时候我们就可以人为“干涉”,Spark 从 2.2.0 版本开始(参见SPARK-16475),支

w397090770   11个月前 (09-15) 1244℃ 0评论3喜欢

Spark

每个 Spark 工程师都应该知道的五种 Join 策略

每个 Spark 工程师都应该知道的五种 Join 策略
数据分析中将两个数据集进行 Join 操作是很常见的场景。在 Spark 的物理计划(physical plan)阶段,Spark 的 JoinSelection 类会根据 Join hints 策略、Join 表的大小、 Join 是等值 Join(equi-join) 还是不等值(non-equi-joins)以及参与 Join 的 key 是否可以排序等条件来选择最终的 Join 策略(join strategies),最后 Spark 会利用选择好的 Join 策略执行最

w397090770   11个月前 (09-13) 2006℃ 0评论10喜欢