欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
开发爱好者社区:
bigdata_ai

 分类:Spark

Spark SQL 物化视图原理与实践

Spark SQL 物化视图原理与实践
物化视图作为一种预计算的优化方式,广泛应用于传统数据库中,如Oracle,MSSQL Server等。随着大数据技术的普及,各类数仓及查询引擎在业务中扮演着越来越重要的数据分析角色,而物化视图作为数据查询的加速器,将极大增强用户在数据分析工作中的使用体验。本文将基于 SparkSQL(2.4.4) + Hive (2.3.6), 介绍物化视图在SparkSQL中

w397090770   2个月前 (05-14) 488℃ 0评论2喜欢

图文介绍 SQL 的三种查询计划处理模型

图文介绍 SQL 的三种查询计划处理模型
我已经在之前的 《一条 SQL 在 Apache Spark 之旅(上)》、《一条 SQL 在 Apache Spark 之旅(中)》 以及 《一条 SQL 在 Apache Spark 之旅(下)》 这三篇文章中介绍了 SQL 从用户提交到最后执行都经历了哪些过程,感兴趣的同学可以去这三篇文章看看。这篇文章中我们主要来介绍 SQL 查询计划(Query Plan)常见的处理模型(processing model)。数

w397090770   2个月前 (05-13) 344℃ 0评论3喜欢

Apache Doris在美团外卖数仓中的应用实践

Apache Doris在美团外卖数仓中的应用实践
序言美团外卖数据仓库技术团队负责支撑日常业务运营及分析师的日常分析,由于外卖业务特点带来的数据生产成本较高和查询效率偏低的问题,他们通过引入Apache Doris引擎优化生产方案,实现了低成本生产与高效查询的平衡。并以此分析不同业务场景下,基于Kylin的MOLAP模式与基于Doris引擎的ROLAP模式的适用性问题。希望能对大家有

w397090770   3个月前 (04-17) 551℃ 0评论2喜欢

Spark 3.0 终于支持 event logs 滚动了

Spark 3.0 终于支持 event logs 滚动了
背景相信经常使用 Spark 的同学肯定知道 Spark 支持将作业的 event log 保存到持久化设备。默认这个功能是关闭的,不过我们可以通过 spark.eventLog.enabled 参数来启用这个功能,并且通过 spark.eventLog.dir 参数来指定 event log 保存的地方,可以是本地目录或者 HDFS 上的目录,不过一般我们都会将它设置成 HDFS 上的一个目录。但是这个功能

w397090770   4个月前 (03-09) 1080℃ 0评论7喜欢

还在玩数据仓库?现在已经是 LakeHouse 时代!

还在玩数据仓库?现在已经是 LakeHouse 时代!
引入在Databricks的过去几年中,我们看到了一种新的数据管理范式,该范式出现在许多客户和案例中:LakeHouse。在这篇文章中,我们将描述这种新范式及其相对于先前方案的优势。数据仓库技术自1980诞生以来一直在发展,其在决策支持和商业智能应用方面拥有悠久的历史,而MPP体系结构使得系统能够处理更大数据量。但是,虽

w397090770   5个月前 (02-03) 1948℃ 0评论6喜欢

Apache Spark 将支持 Stage 级别的资源控制和调度

Apache Spark 将支持 Stage 级别的资源控制和调度
背景熟悉 Spark 的同学都知道,Spark 作业启动的时候我们需要指定 Exectuor 的个数以及内存、CPU 等信息。但是在 Spark 作业运行的时候,里面可能包含很多个 Stages,这些不同的 Stage 需要的资源可能不一样,由于目前 Spark 的设计,我们无法对每个 Stage 进行细粒度的资源设置。而且即使是一个资深的工程师也很难准确的预估一个比较

w397090770   6个月前 (01-10) 743℃ 0评论2喜欢

Apache Spark SQL 在有赞大数据的实践

Apache Spark SQL 在有赞大数据的实践
一、前言在 2019 年 1 月份的时候,我们发表过一篇博客 从 Hive 迁移到 Spark SQL 在有赞的实践,里面讲述我们在 Spark 里所做的一些优化和任务迁移相关的内容。本文会接着上次的话题继续讲一下我们之后在 SparkSQL 上所做的一些改进,以及如何做到 SparkSQL 占比提升到 91% 以上,最后也分享一些在 Spark 踩过的坑和经验希望能帮助到大家

w397090770   6个月前 (01-05) 1055℃ 0评论2喜欢

60TB 数据量的作业从 Hive 迁移到 Spark 在 Facebook 的实践

60TB 数据量的作业从 Hive 迁移到 Spark 在 Facebook 的实践
Facebook 经常使用分析来进行数据驱动的决策。在过去的几年里,用户和产品都得到了增长,使得我们分析引擎中单个查询的数据量达到了数十TB。我们的一些批处理分析都是基于 Hive 平台(Apache Hive 是 Facebook 在2009年贡献给社区的)和 Corona( Facebook 内部的 MapReduce 实现)进行的。Facebook 还针对包括 Hive 在内的多个内部数据存储,继续

w397090770   7个月前 (12-19) 1097℃ 0评论8喜欢

Delta Lake 0.5.0 正式发布,支持包括 Hive/Presto 等多种查询引擎

Delta Lake 0.5.0 正式发布,支持包括 Hive/Presto 等多种查询引擎
Delta Lake 0.5.0 于2019年12月13日正式发布,正式版本可以到 这里 下载使用。这个版本支持多种查询引擎查询 Delta Lake 的数据,比如常见的 Hive、Presto 查询引擎。并发操作得到改进。当然,这个版本还是不支持直接使用 SQL 去增删改查 Delta Lake 的数据,这个可能得等到明年1月的 Apache Spark 3.0.0 的发布。好了,下面我们来详细介绍这个版本

w397090770   7个月前 (12-15) 1085℃ 0评论2喜欢

Spark SQL 在字节跳动的优化实践

Spark SQL 在字节跳动的优化实践
以下是字节跳动数据仓库架构负责人郭俊的分享主题沉淀,《字节跳动在Spark SQL上的核心优化实践》。PPT 请微信关注过往记忆大数据,并回复 bd_sparksql 获取。今天的分享分为三个部分,第一个部分是 SparkSQL 的架构简介,第二部分介绍字节跳动在 SparkSQL 引擎上的优化实践,第三部分是字节跳动在 Spark  Shuffle 稳定性提升和性能

w397090770   7个月前 (12-03) 2579℃ 0评论3喜欢