欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:978
  2. 浏览总数:11,981,827
  3. 评论:3939
  4. 分类目录:106 个
  5. 注册用户数:6130
  6. 最后更新:2018年12月15日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
大数据猿:
bigdata_ai

五分钟了解Elasticsearch

使用 ElasticSearch 我们可以构建一个功能完备的搜索服务器。这一切实现起来都很简单,本文将花五分钟向你介绍如何实现。

安装和运行Elasticsearch

这篇文章的操作环境是 Linux 或者 Mac,在安装 ElasticSearch 之前,确保你的系统上已经安装好 JDK 6 或者以上版本。

wget https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-1.7.2.tar.gz
tar -zxvf elasticsearch-1.7.2.tar.gz
cd elasticsearch-1.7.2
bin/elasticsearch

然后你将在终端看到如下输出:

[2015-09-14 15:32:52,278][INFO ][node                     ] [Big Man] version[1.7.2], pid[10907], build[e43676b/2015-09-14T09:49:53Z]
[2015-09-14 15:32:52,279][INFO ][node                     ] [Big Man] initializing ...
[2015-09-14 15:32:52,376][INFO ][plugins                  ] [Big Man] loaded [], sites []
[2015-09-14 15:32:52,426][INFO ][env                      ] [Big Man] using [1] data paths, mounts [[/ (/dev/sdc1)]], net usable_space [8.7gb], net total_space [219.9gb], types [ext3]
Java HotSpot(TM) Server VM warning: You have loaded library /tmp/es/elasticsearch-1.7.2/lib/sigar/libsigar-x86-linux.so which might have disabled stack guard. The VM will try to fix the stack guard now.
It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'.
[2015-09-14 15:32:55,294][INFO ][node                     ] [Big Man] initialized
[2015-09-14 15:32:55,294][INFO ][node                     ] [Big Man] starting ...
[2015-09-14 15:32:55,411][INFO ][transport                ] [Big Man] bound_address {inet[/0:0:0:0:0:0:0:0:9300]}, publish_address {inet[/192.168.43.172:9300]}
[2015-09-14 15:32:55,428][INFO ][discovery                ] [Big Man] elasticsearch/VKL1HQmyT_KRtmTGznmQyg
[2015-09-14 15:32:59,210][INFO ][cluster.service          ] [Big Man] new_master [Big Man][VKL1HQmyT_KRtmTGznmQyg][Happy][inet[/192.168.43.172:9300]], reason: zen-disco-join (elected_as_master)
[2015-09-14 15:32:59,239][INFO ][http                     ] [Big Man] bound_address {inet[/0:0:0:0:0:0:0:0:9200]}, publish_address {inet[/192.168.43.172:9200]}
[2015-09-14 15:32:59,239][INFO ][node                     ] [Big Man] started
[2015-09-14 15:32:59,284][INFO ][gateway                  ] [Big Man] recovered [0] indices into cluster_state

现在你的系统上成功运行了 Elasticsearch !你可以在浏览器里面访问 http://localhost:9200 ,这时候浏览器里面会返回以下内容:

{
  "status" : 200,
  "name" : "Big Man",
  "cluster_name" : "elasticsearch",
  "version" : {
    "number" : "1.7.2",
    "build_hash" : "e43676b1385b8125d647f593f7202acbd816e8ec",
    "build_timestamp" : "2015-09-14T09:49:53Z",
    "build_snapshot" : false,
    "lucene_version" : "4.10.4"
  },
  "tagline" : "You Know, for Search"
}

索引数据

现在我们往 ElasticSearch 里面构建一些数据,我们假设有一个博客系统,里面有一些文章和评论相关的数据,现在将这些信息添加到 ElasticSearch 里面:

curl -XPUT 'http://localhost:9200/blog/user/dilbert' -d '{ "name" : "Dilbert Brown" }'

curl -XPUT 'http://localhost:9200/blog/post/1' -d '
{ 
    "user": "dilbert", 
    "postDate": "2011-12-15", 
    "body": "Search is hard. Search should be easy." ,
    "title": "On search"
}'

curl -XPUT 'http://localhost:9200/blog/post/2' -d '
{ 
    "user": "dilbert", 
    "postDate": "2011-12-12", 
    "body": "Distribution is hard. Distribution should be easy." ,
    "title": "On distributed search"
}'

curl -XPUT 'http://localhost:9200/blog/post/3' -d '
{ 
    "user": "dilbert", 
    "postDate": "2011-12-10", 
    "body": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat" ,
    "title": "Lorem ipsum"
}'

上面的每一步请求,你都会接受到一个响应,里面会证明你的请求成功,如下:

{"ok":true,"_index":"blog","_type":"post","_id":"1","_version":1}

现在我们来看看上面的请求是否正的成功了:

curl -XGET 'http://localhost:9200/blog/user/dilbert?pretty=true'
curl -XGET 'http://localhost:9200/blog/post/1?pretty=true'
curl -XGET 'http://localhost:9200/blog/post/2?pretty=true'
curl -XGET 'http://localhost:9200/blog/post/3?pretty=true'

注意:往 ElasticSearch 里面添加数据主要有两种方式:

  • 通过HTTP发送Json数据;
  • 内置提供的客户端(Native client)。

搜索

我们来看看我们是否可以检索我们刚刚通过搜索添加的文档,下面的例子是找出所有 Dilbert 作者的文章:

curl 'http://localhost:9200/blog/post/_search?q=user:dilbert&pretty=true'

上面的请求将会返回以下的Json结果:

{
  "took": 85, 
  "timed_out": false, 
  "_shards": {
    "total": 5, 
    "successful": 5, 
    "failed": 0
  }, 
  "hits": {
    "total": 3, 
    "max_score": 1, 
    "hits": [
      {
        "_index": "blog", 
        "_type": "post", 
        "_id": "1", 
        "_score": 1, 
        "_source": {
          "user": "dilbert", 
          "postDate": "2011-12-15", 
          "body": "Search is hard. Search should be easy.", 
          "title": "On search"
        }
      }, 
      {
        "_index": "blog", 
        "_type": "post", 
        "_id": "2", 
        "_score": 0.30685282, 
        "_source": {
          "user": "dilbert", 
          "postDate": "2011-12-12", 
          "body": "Distribution is hard. Distribution should be easy.", 
          "title": "On distributed search"
        }
      }, 
      {
        "_index": "blog", 
        "_type": "post", 
        "_id": "3", 
        "_score": 0.30685282, 
        "_source": {
          "user": "dilbert", 
          "postDate": "2011-12-10", 
          "body": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat", 
          "title": "Lorem ipsum"
        }
      }
    ]
  }
}

下面例子搜索标题不含 search 的文章

curl 'http://localhost:9200/blog/post/_search?q=-title:search&pretty=true'

下面例子搜索标题包含 search 但是不包含 distributed 的文章:

curl 'http://localhost:9200/blog/post/_search?q=+title:search%20-title:distributed&pretty=true&fields=title'

下面例子通过 postDate 字段搜索一定时间范围内的文章:

curl -XGET 'http://localhost:9200/blog/_search?pretty=true' -d '
{ 
    "query" : { 
        "range" : { 
            "postDate" : { "from" : "2011-12-10", "to" : "2011-12-12" } 
        } 
    } 
}'

好了,现在我们已经学习了 ElasticSearch 的一些基本的使用情况。

本博客文章除特别声明,全部都是原创!
转载本文请加上:转载自过往记忆(https://www.iteblog.com/)
本文链接: 【五分钟了解Elasticsearch】(https://www.iteblog.com/archives/1859.html)
喜欢 (9)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!