欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:988
  2. 浏览总数:12,219,054
  3. 评论:3982
  4. 分类目录:106 个
  5. 注册用户数:6259
  6. 最后更新:2019年1月14日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
大数据猿:
bigdata_ai

标签:Flink

Flink

Flink是如何与YARN进行交互的

Flink是如何与YARN进行交互的
在前面(《Flink on YARN部署快速入门指南》的文章中我们简单地介绍了如何在YARN上提交和运行Flink作业,本文将简要地介绍Flink是如何与YARN进行交互的。  YRAN客户端需要访问Hadoop的相关配置文件,从而可以连接YARN资源管理器和HDFS。它使用下面的规则来决定Hadoop配置:  1、判断YARN_CONF_DIR,HADOOP_CONF_DIR或HADOOP_CONF_PATH等环境

w397090770   3年前 (2016-04-04) 3271℃ 0评论5喜欢

Flink

Apache Flink vs Apache Spark

Apache Flink vs Apache Spark
  我们是否还需要另外一个新的数据处理引擎?当我第一次听到Flink的时候这是我是非常怀疑的。在大数据领域,现在已经不缺少数据处理框架了,但是没有一个框架能够完全满足不同的处理需求。自从Apache Spark出现后,貌似已经成为当今把大部分的问题解决得最好的框架了,所以我对另外一款解决类似问题的框架持有很强烈的怀

w397090770   3年前 (2016-04-04) 13993℃ 0评论37喜欢

Flink

如何选择Apache Spark和Apache Flink

如何选择Apache Spark和Apache Flink
  Spark Streaming和Flink都能提供恰好一次的保证,即每条记录都仅处理一次。与其他处理系统(比如Storm)相比,它们都能提供一个非常高的吞吐量。它们的容错开销也都非常低。之前,Spark提供了可配置的内存管理,而Flink提供了自动内存管理,但从1.6版本开始,Spark也提供了自动内存管理。这两个流处理引擎确实有许多相似之处,

w397090770   3年前 (2016-04-02) 3195℃ 0评论4喜欢

Flink

Flink on YARN部署快速入门指南

Flink on YARN部署快速入门指南
  Apache Flink是一个高效、分布式、基于Java和Scala(主要是由Java实现)实现的通用大数据分析引擎,它具有分布式 MapReduce一类平台的高效性、灵活性和扩展性以及并行数据库查询优化方案,它支持批量和基于流的数据分析,且提供了基于Java和Scala的API。  从Flink官方文档可以知道,目前Flink支持三大部署模式:Local、Cluster以及Cloud

w397090770   3年前 (2016-03-30) 11240℃ 6评论12喜欢

Flink

关于大数据的五问五答

关于大数据的五问五答
  本文出自本公众号ChinaScala,由陈超所述。一、Spark能否取代Hadoop?  答: Hadoop包含了Common,HDFS,YARN及MapReduce,Spark从来没说要取代Hadoop,最多也就是取代掉MapReduce。事实上现在Hadoop已经发展成为一个生态系统,并且Hadoop生态系统也接受更多优秀的框架进来,如Spark (Spark可以和HDFS无缝结合,并且可以很好的跑在YARN上).。

w397090770   3年前 (2015-08-26) 5892℃ 1评论35喜欢