欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:1104
  2. 浏览总数:15,092,083
  3. 评论:4203
  4. 分类目录:124 个
  5. 注册用户数:7099
  6. 最后更新:2020年2月16日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
开发爱好者社区:
bigdata_ai

 分类:HBase

Apache HBase 1.3.0正式发布

Apache HBase 1.3.0正式发布
  Apache HBase 1.3.0于美国时间2017年01月17日正式发布。本版本是Hbase 1.x版本线的第三次小版本,大约解决了1700个issues,主要包括了大量的Bug修复和性能提升;其中以下的新特性值得关注:Date-based tiered compactions (HBASE-15181, HBASE-15339)Maven archetypes for HBase client applications (HBASE-14877)Throughput controller for flushes (HBASE-14969)Controlled delay (CoD

w397090770   3年前 (2017-01-18) 2918℃ 0评论3喜欢

使用Spark读取HBase中的数据

使用Spark读取HBase中的数据
  在《Spark读取Hbase中的数据》文章中我介绍了如何在Spark中读取Hbase中的数据,并提供了Java和Scala两个版本的实现,本文将接着上文介绍如何通过Spark将计算好的数据存储到Hbase中。  Spark中内置提供了两个方法可以将数据写入到Hbase:(1)、saveAsHadoopDataset;(2)、saveAsNewAPIHadoopDataset,它们的官方介绍分别如下:  saveAsHad

w397090770   3年前 (2016-11-29) 15519℃ 1评论28喜欢

通过BulkLoad快速将海量数据导入到Hbase[Hadoop篇]

通过BulkLoad快速将海量数据导入到Hbase[Hadoop篇]
在第一次建立Hbase表的时候,我们可能需要往里面一次性导入大量的初始化数据。我们很自然地想到将数据一条条插入到Hbase中,或者通过MR方式等。但是这些方式不是慢就是在导入的过程的占用Region资源导致效率低下,所以很不适合一次性导入大量数据。本文将针对这个问题介绍如何通过Hbase的BulkLoad方法来快速将海量数据导入到Hbas

w397090770   3年前 (2016-11-28) 13068℃ 2评论48喜欢

运行Hbase作业出现cannot access its superclass com.google.protobuf.LiteralByteString异常解决

运行Hbase作业出现cannot access its superclass com.google.protobuf.LiteralByteString异常解决
最近写了一个Spark程序用来读取Hbase中的数据,我的Spark版本是1.6.1,Hbase版本是0.96.2-hadoop2,当程序写完之后,使用下面命令提交作业:[code lang="java"][iteblog@www.iteblog.com $] bin/spark-submit --master yarn-cluster --executor-memory 4g --num-executors 5 --queue iteblog --executor-cores 2 --class com.iteblog.hbase.HBaseRead --jars spark-hbase-connector_2.10-1.0.3.jar,hbase-common-0.9

w397090770   3年前 (2016-11-03) 2728℃ 0评论6喜欢

Hive和HBase整合用户指南

Hive和HBase整合用户指南
  本文讲解的Hive和HBase整合意思是使用Hive读取Hbase中的数据。我们可以使用HQL语句在HBase表上进行查询、插入操作;甚至是进行Join和Union等复杂查询。此功能是从Hive 0.6.0开始引入的,详情可以参见HIVE-705。Hive与HBase整合的实现是利用两者本身对外的API接口互相进行通信,相互通信主要是依靠hive-hbase-handler-1.2.0.jar工具里面的类实现

w397090770   4年前 (2016-07-31) 14902℃ 0评论40喜欢

Apache HBase 1.2.1正式发布

Apache HBase 1.2.1正式发布
  Apache HBase 1.2.1 于2016-04-12正式发布了,HBase 1.2.1是HBase 1.2.z版本线上的第一个维护版本,该版本的主题仍然是为Hadoop和NoSQL社区带来稳定和可靠的数据库。此版本在1.2.0版本上解决了27个issues。主要的Bug修改* [HBASE-15441] - Fix WAL splitting when region has moved multiple times* [HBASE-15219] - Canary tool does not return non-zero exit code when

w397090770   4年前 (2016-04-14) 2581℃ 0评论2喜欢

关于大数据的五问五答

关于大数据的五问五答
  本文出自本公众号ChinaScala,由陈超所述。一、Spark能否取代Hadoop?  答: Hadoop包含了Common,HDFS,YARN及MapReduce,Spark从来没说要取代Hadoop,最多也就是取代掉MapReduce。事实上现在Hadoop已经发展成为一个生态系统,并且Hadoop生态系统也接受更多优秀的框架进来,如Spark (Spark可以和HDFS无缝结合,并且可以很好的跑在YARN上).。

w397090770   5年前 (2015-08-26) 6455℃ 1评论38喜欢

Hadoop等大数据学习相关电子书[共85本]

Hadoop等大数据学习相关电子书[共85本]
  下面的大数据学习电子书我会陆续上传,敬请关注。一、Hadoop1、Hadoop Application Architectures2、Hadoop: The Definitive Guide, 4th Edition3、Hadoop Security Protecting Your Big Data Platform4、Field Guide to Hadoop An Introduction to Hadoop, Its Ecosystem, and Aligned Technologies5、Hadoop Operations A Guide for Developers and Administrators6、Hadoop Backup and Recovery Solutions

w397090770   5年前 (2015-08-11) 19406℃ 2评论54喜欢

使用Spark SQL读取HBase上的数据

使用Spark SQL读取HBase上的数据
  近日,由华为团队开发的Spark-SQL-on-HBase项目通过Spark SQL/DataFrame并调用Hbase内置的访问API读取HBase上面的数据,该项目具有很好的可扩展性和可靠性。这个项目具有以下的特点:  1、基于部分评估技术,该项目具有强大的数据剪枝和智能扫描特点;  2、支持自定义过滤规则、协处理器等以便支持超低延迟的处理;  3

w397090770   5年前 (2015-07-23) 20659℃ 0评论21喜欢

SQL on Hadoop:场景和结论

SQL on Hadoop:场景和结论
以下文章是转载自国外网站,介绍了Hadoop生态系统上面的几种SQL:Hive、Drill、Impala、Presto以及Spark\Shark等应用场景、对比以及一些结论Within the big data landscape there are multiple approaches to accessing, analyzing, and manipulating data in Hadoop. Each depends on key considerations such as latency, ANSI SQL completeness (and the ability to tolerate machine-generated SQL), developer and a

w397090770   6年前 (2014-08-11) 9447℃ 0评论14喜欢