欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:1037
  2. 浏览总数:13,627,785
  3. 评论:4107
  4. 分类目录:108 个
  5. 注册用户数:6957
  6. 最后更新:2019年6月27日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
Hadoop技术博文:
bigdata_ai

 分类:HBase

HBase 多租户隔离技术:RegionServer Group 介绍及实战

HBase 多租户隔离技术:RegionServer Group 介绍及实战
背景随着 Apache HBase 在各个领域的广泛应用,在 HBase 运维或应用的过程中我们可能会遇到这样的问题:同一个 HBase 集群使用的用户越来越多,不同用户之间的读写或者不同表的 compaction、region splits 操作可能对其他用户或表产生了影响。将所有业务的表都存放在一个集群的好处是可以很好的利用整个集群的资源,只需要一套运

w397090770   9个月前 (11-01) 2195℃ 4评论9喜欢

HBase基本知识介绍及典型案例分析

HBase基本知识介绍及典型案例分析
本文来自于2018年10月20日由中国 HBase 技术社区在武汉举办的中国 HBase Meetup 第六次线下交流会。分享者为过往记忆。本文 PPT 下载 请关注 iteblog_hadoop 微信公众号,并回复 HBase 获取。如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公众号:iteblog_hadoop本次分享的内容主要分为以下五点:HBase基本知识;HBase读

w397090770   9个月前 (10-25) 3340℃ 0评论19喜欢

Apache HBase中等对象存储MOB压缩分区策略介绍

Apache HBase中等对象存储MOB压缩分区策略介绍
关于 HBase 的 MOB 具体使用可以参见 《HBase MOB(Medium Object)使用入门指南》介绍Apache HBase 中等对象存储(Medium Object Storage, 下面简称 MOB)的特性是由 HBASE-11339 引入的。该功能可以提高 HBase 对中等尺寸文件的低延迟读写访问(理想情况下,文件大小为 100K 到 10MB),这个功能使得 HBase 非常适合存储文档,图片和其他中等尺寸的对

w397090770   11个月前 (08-27) 1025℃ 0评论2喜欢

中国民生银行 HBase 读写设计与实践

中国民生银行 HBase 读写设计与实践
背景介绍本项目主要解决 check 和 opinion2 张历史数据表(历史数据是指当业务发生过程中的完整中间流程和结果数据)的在线查询。原实现基于 Oracle 提供存储查询服务,随着数据量的不断增加,在写入和读取过程中面临性能问题,且历史数据仅供业务查询参考,并不影响实际流程,从系统结构上来说,放在业务链条上游比较重。

w397090770   2年前 (2017-10-28) 455℃ 0评论3喜欢

基于 HBase 构建可伸缩的分布式事务队列

基于 HBase 构建可伸缩的分布式事务队列
一个实时流处理框架通常需要两个基础架构:处理器和队列。处理器从队列中读取事件,执行用户的处理代码,如果要继续对结果进行处理,处理器还会把事件写到另外一个队列。队列由框架提供并管理。队列做为处理器之间的缓冲,传输数据和事件,这样处理器可以单独操作和扩展。例如,一个web 服务访问日志处理应用,可能是

w397090770   2年前 (2017-07-12) 69℃ 0评论0喜欢

在Spark上通过BulkLoad快速将海量数据导入到Hbase

在Spark上通过BulkLoad快速将海量数据导入到Hbase
我们在《通过BulkLoad快速将海量数据导入到Hbase[Hadoop篇]》文中介绍了一种快速将海量数据导入Hbase的一种方法,而本文将介绍如何在Spark上使用Scala编写快速导入数据到Hbase中的方法。这里将介绍两种方式:第一种使用Put普通的方法来倒数;第二种使用Bulk Load API。关于为啥需要使用Bulk Load本文就不介绍,更多的请参见《通过BulkLoad快

w397090770   2年前 (2017-02-28) 10046℃ 1评论33喜欢

HBase 数据压缩介绍与实战

HBase 数据压缩介绍与实战
为了提高 HBase 存储的利用率,很多 HBase 使用者会对 HBase 表中的数据进行压缩。目前 HBase 可以支持的压缩方式有 GZ(GZIP)、LZO、LZ4 以及 Snappy。它们之间的区别如下:GZ:用于冷数据压缩,与 Snappy 和 LZO 相比,GZIP 的压缩率更高,但是更消耗 CPU,解压/压缩速度更慢。Snappy 和 LZO:用于热数据压缩,占用 CPU 少,解压/压缩速度比

w397090770   2年前 (2017-02-09) 135℃ 0评论0喜欢

Apache HBase 1.3.0正式发布

Apache HBase 1.3.0正式发布
  Apache HBase 1.3.0于美国时间2017年01月17日正式发布。本版本是Hbase 1.x版本线的第三次小版本,大约解决了1700个issues,主要包括了大量的Bug修复和性能提升;其中以下的新特性值得关注:Date-based tiered compactions (HBASE-15181, HBASE-15339)Maven archetypes for HBase client applications (HBASE-14877)Throughput controller for flushes (HBASE-14969)Controlled delay (CoD

w397090770   3年前 (2017-01-18) 2672℃ 0评论3喜欢

使用Spark读取HBase中的数据

使用Spark读取HBase中的数据
  在《Spark读取Hbase中的数据》文章中我介绍了如何在Spark中读取Hbase中的数据,并提供了Java和Scala两个版本的实现,本文将接着上文介绍如何通过Spark将计算好的数据存储到Hbase中。  Spark中内置提供了两个方法可以将数据写入到Hbase:(1)、saveAsHadoopDataset;(2)、saveAsNewAPIHadoopDataset,它们的官方介绍分别如下:  saveAsHad

w397090770   3年前 (2016-11-29) 14171℃ 1评论28喜欢

通过BulkLoad快速将海量数据导入到Hbase[Hadoop篇]

通过BulkLoad快速将海量数据导入到Hbase[Hadoop篇]
在第一次建立Hbase表的时候,我们可能需要往里面一次性导入大量的初始化数据。我们很自然地想到将数据一条条插入到Hbase中,或者通过MR方式等。但是这些方式不是慢就是在导入的过程的占用Region资源导致效率低下,所以很不适合一次性导入大量数据。本文将针对这个问题介绍如何通过Hbase的BulkLoad方法来快速将海量数据导入到Hbas

w397090770   3年前 (2016-11-28) 11376℃ 2评论46喜欢