欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:961
  2. 浏览总数:11,484,512
  3. 评论:3873
  4. 分类目录:103 个
  5. 注册用户数:5843
  6. 最后更新:2018年10月17日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
大数据猿:
bigdata_ai

[电子书]Machine Learning with Spark Second Edition PDF下载

本书作者:Rajdeep Dua、Manpreet Singh Ghotra、 Nick Pentreath,由Packt出版社于2017年04月出版,全书共532页。本书是2015年02月出版的Machine Learning with Spark的第二版。通过本书将学习到以下的知识:

  • Get hands-on with the latest version of Spark ML
  • Create your first Spark program with Scala and Python
  • Set up and configure a development environment for Spark on your own computer, as well as on Amazon EC2
  • Access public machine learning datasets and use Spark to load, process, clean, and transform data
  • Use Spark's machine learning library to implement programs by utilizing well-known machine learning models
  • Deal with large-scale text data, including feature extraction and using text data as input to your machine learning models
  • Write Spark functions to evaluate the performance of your machine learning models
Machine Learning with Spark Second Edition
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop

本书的章节

Chapter 1: Getting Up and Running with Spark
Chapter 2: Math for Machine Learning
Chapter 3: Designing a Machine Learning System
Chapter 4: Obtaining, Processing, and Preparing Data with Spark
Chapter 5: Building a Recommendation Engine with Spark
Chapter 6: Building a Classification Model with Spark
Chapter 7: Building a Regression Model with Spark
Chapter 8: Building a Clustering Model with Spark
Chapter 9: Dimensionality Reduction with Spark
Chapter 10: Advanced Text Processing with Spark
Chapter 11: Real-Time Machine Learning with Spark Streaming
Chapter 12: Pipeline APIs for Spark ML

下载地址

点击进入下载

本博客文章除特别声明,全部都是原创!
转载本文请加上:转载自过往记忆(https://www.iteblog.com/)
本文链接: 【[电子书]Machine Learning with Spark Second Edition PDF下载】(https://www.iteblog.com/archives/2150.html)
喜欢 (10)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!