在本博客的《Spark Metrics配置详解》文章中介绍了Spark Metrics的配置,其中我们就介绍了Spark监控支持Ganglia Sink。
Ganglia是UC Berkeley发起的一个开源集群监视项目,主要是用来监控系统性能,如:cpu 、mem、硬盘利用率, I/O负载、网络流量情况等,通过曲线很容易见到每个节点的工作状态,对合理调整、分配系统资源,提高系统整体性能起到重要作用。
由于Licene的限制,没有放到默认的build里面,如果需要使用,需要自己编译。在使用Maven编译Spark的时候,我们可以加上-Pspark-ganglia-lgpl选项来将Ganglia相关的类打包进spark-assembly-x.x.x-hadoopx.x.x.jar中,命令如下:
[iteblog@iteblog spark]$ ./make-distribution.sh --tgz -Phadoop-2.4 -Pyarn -DskipTests -Dhadoop.version=2.4.0 -Pspark-ganglia-lgpl
如果你使用的是SBT来编译,可以加上SPARK_GANGLIA_LGPL=true,完整命令如下:
[iteblog@iteblog spark]$ SPARK_HADOOP_VERSION=2.4.0 SPARK_YARN=true SPARK_GANGLIA_LGPL=true sbt/sbt assembly
或者你在提交作业的时候,单独将Ganglia相关依赖加入到--jars选项中:
--jars lib/spark-ganglia-lgpl_2.10-x.x.x.jar ...
依赖弄好之后,我们需要在$SPARK_HOME/conf/metrics.properties文件中加入一下配置:
*.sink.ganglia.class=org.apache.spark.metrics.sink.GangliaSink *.sink.ganglia.host=www.iteblog.com *.sink.ganglia.port=8080 *.sink.ganglia.period=10 *.sink.ganglia.unit=seconds *.sink.ganglia.ttl=1 *.sink.ganglia.mode=multicast
host和port这个就是你Ganglia监控的地址,其中mode支持'unicast'(单播) 和 'multicast'(多播)两种模式。
15/06/11 23:35:14 ERROR MetricsSystem: Sink class org.apache.spark.metrics.sink.GangliaSink cannot be instantialized
java.lang.ClassNotFoundException: org.apache.spark.metrics.sink.GangliaSink
at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:191)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSinks$1.apply(MetricsSystem.scala:138)
at org.apache.spark.metrics.MetricsSystem$$anonfun$registerSinks$1.apply(MetricsSystem.scala:134)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:98)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:98)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:226)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:39)
at scala.collection.mutable.HashMap.foreach(HashMap.scala:98)
at org.apache.spark.metrics.MetricsSystem.registerSinks(MetricsSystem.scala:134)
at org.apache.spark.metrics.MetricsSystem.<init>(MetricsSystem.scala:84)
at org.apache.spark.metrics.MetricsSystem$.createMetricsSystem(MetricsSystem.scala:171)
at org.apache.spark.deploy.worker.Worker.<init>(Worker.scala:106)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at akka.util.Reflect$.instantiate(Reflect.scala:65)
at akka.actor.Props.newActor(Props.scala:337)
at akka.actor.ActorCell.newActor(ActorCell.scala:534)
at akka.actor.ActorCell.create(ActorCell.scala:560)
at akka.actor.ActorCell.invokeAll$1(ActorCell.scala:425)
at akka.actor.ActorCell.systemInvoke(ActorCell.scala:447)
at akka.dispatch.Mailbox.processAllSystemMessages(Mailbox.scala:262)
at akka.dispatch.Mailbox.run(Mailbox.scala:218)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
请查看你的Spark包是否将org.apache.spark.metrics.sink.GangliaSink打包进去了;或者仔细看下你的配置文件,请尽量拷贝我这里提供的。
配置弄好之后,启动你的Spark集群,然后去/ganglia-web监控页面查看是否弄好了,类似下面的信息:
除了上图的master.apps 和master.workers 监控,Ganglia里面还显示如下的信息:
{
"version": "3.0.0",
"gauges": {
"jvm.PS-MarkSweep.count": {
"value": 0
},
"jvm.PS-MarkSweep.time": {
"value": 0
},
"jvm.PS-Scavenge.count": {
"value": 186
},
"jvm.PS-Scavenge.time": {
"value": 375
},
"jvm.heap.committed": {
"value": 536412160
},
"jvm.heap.init": {
"value": 536870912
},
"jvm.heap.max": {
"value": 536412160
},
"jvm.heap.usage": {
"value": 0.315636349481712
},
"jvm.heap.used": {
"value": 169311176
},
"jvm.non-heap.committed": {
"value": 37879808
},
"jvm.non-heap.init": {
"value": 24313856
},
"jvm.non-heap.max": {
"value": 184549376
},
"jvm.non-heap.usage": {
"value": 0.19970542734319513
},
"jvm.non-heap.used": {
"value": 36855512
},
"jvm.pools.Code-Cache.usage": {
"value": 0.031689961751302086
},
"jvm.pools.PS-Eden-Space.usage": {
"value": 0.9052384254331968
},
"jvm.pools.PS-Old-Gen.usage": {
"value": 0.02212668565200476
},
"jvm.pools.PS-Perm-Gen.usage": {
"value": 0.26271122694015503
},
"jvm.pools.PS-Survivor-Space.usage": {
"value": 0.5714285714285714
},
"jvm.total.committed": {
"value": 574291968
},
"jvm.total.init": {
"value": 561184768
},
"jvm.total.max": {
"value": 720961536
},
"jvm.total.used": {
"value": 206166688
},
"master.apps": {
"value": 0
},
"master.waitingApps": {
"value": 0
},
"master.workers": {
"value": 0
}
},
"counters": { },
"histograms": { },
"meters": { },
"timers": { }
}
本博客文章除特别声明,全部都是原创!原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【使用Ganglia监控Spark】(https://www.iteblog.com/archives/1347.html)



请问一下配置成功后是不是可以看到spark的master以及worker这些进程的监控信息(例如LZ所述:除了上图的master.apps 和master.workers 监控),我在监控页面只看到了ganglia集群以及节点的cpu,内存等相关的信息而已