欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:978
  2. 浏览总数:11,953,005
  3. 评论:3936
  4. 分类目录:106 个
  5. 注册用户数:6116
  6. 最后更新:2018年12月15日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
大数据猿:
bigdata_ai

Spark SQL 1.1.0和Hive的兼容说明

  Spark SQL也是可以直接部署在当前的Hive wareHouse。
  Spark SQL 1.1.0的 Thrift JDBC server 被设计成兼容当前的Hive数据仓库。你不需要修改你的Hive元数据,或者是改变表的数据存放目录以及分区。


如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop

  以下列出来的是当前Spark SQL(1.1.0)对Hive特性的支持

一、Hive查询语句,包括:
  • SELECT
  • GROUP BY
  • ORDER BY
  • CLUSTER BY
  • SORT BY
二、所有的Hive操作:
  • Relational operators (=, ⇔, ==, <>, <, >, >=, <=, etc)
  • Arthimatic operators (+, -, *, /, %, etc)
  • Logical operators (AND, &&, OR, ||, etc)
  • Complex type constructors
  • Mathemtatical functions (sign, ln, cos, etc)
  • String functions (instr, length, printf, etc)
  • User defined functions (UDF)
  • User defined aggregation functions (UDAF)
  • User defined serialization formats (SerDe’s)
  • Joins
  • JOIN
  • {LEFT|RIGHT|FULL} OUTER JOIN
  • LEFT SEMI JOIN
  • CROSS JOIN
  • Unions
  • Sub queries
  • SELECT col FROM ( SELECT a + b AS col from t1) t2
  • Sampling
  • Explain
  • Partitioned tables
三、所有的Hive DDL函数,包括:
  • CREATE TABLE
  • CREATE TABLE AS SELECT
  • ALTER TABLE
四、大部分的Hive数据类型,包括:
  • TINYINT
  • SMALLINT
  • INT
  • BIGINT
  • BOOLEAN
  • FLOAT
  • DOUBLE
  • STRING
  • BINARY
  • TIMESTAMP
  • ARRAY<>
  • MAP<>
  • STRUCT<>

以下是不支持Hive的:

一、Major Hive Features

  带有buckets的table,目前Spark SQL还不支持。

二、Esoteric Hive Features

  1、带有不同输入格式的分区表,在Spark SQL中,所有的表分区的输入格式必须相同;
  2、不等值的outer join(”key < 10″),在Spark中将会得到错误的结果;  3、UNIONTYPE  4、不支持Unique join  5、不支持单查询多插入语句(Single query multi insert)  6、Column statistics collecting: Spark SQL does not piggyback scans to collect column statistics at the moment.

三、Hive的输入 输出格式
  1、CLI的文件格式: 对于返回到CLI界面的结果信息,Spark SQL目前只支持TextOutputFormat
  2、Hadoop archive

四、Hive优化

  有一大部分的Hive优化在当前的Spark SQL是不支持的,这些优化中(包括了Indexs)在Spark SQL是不重要的,因为Spark SQL是基于内存的计算模型。其他的优化将会在Spark SQL以后的版本得到支持。(下面我就不翻译了,太要时间了。下面的英文都简单易懂)
  1、Block level bitmap indexes and virtual columns (used to build indexes)
  2、Automatically convert a join to map join: For joining a large table with multiple small tables, Hive automatically converts the join into a map join. We are adding this auto conversion in the next release.
  3、Automatically determine the number of reducers for joins and groupbys: Currently in Spark SQL, you need to control the degree of parallelism post-shuffle using “SET spark.sql.shuffle.partitions=[num_tasks];”. We are going to add auto-setting of parallelism in the next release.
  4、Meta-data only query: For queries that can be answered by using only meta data, Spark SQL still launches tasks to compute the result.
  5、Skew data flag: Spark SQL does not follow the skew data flags in Hive.
  6、STREAMTABLE hint in join: Spark SQL does not follow the STREAMTABLE hint.
  7、Merge multiple small files for query results: if the result output contains multiple small files, Hive can optionally merge the small files into fewer large files to avoid overflowing the HDFS metadata. Spark SQL does not support that.

  仔细看下就知道这些其实都是Shark对Hive的兼容,《Shark对Hive的兼容性总结》,其实就是把Shark迁移进Spark SQL了。期待Spark SQL更强大的功能了。

本博客文章除特别声明,全部都是原创!
转载本文请加上:转载自过往记忆(https://www.iteblog.com/)
本文链接: 【Spark SQL 1.1.0和Hive的兼容说明】(https://www.iteblog.com/archives/1118.html)
喜欢 (6)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!