在Spark 1.x版本,我们收到了很多询问SparkContext, SQLContext和HiveContext之间关系的问题。当人们想使用DataFrame API的时候把HiveContext当做切入点的确有点奇怪。在Spark 2.0,引入了SparkSession,作为一个新的切入点并且包含了SQLContext和HiveContext的功能。为了向后兼容,SQLContext和HiveContext被保存下来。SparkSession拥有许多特性,下面将展示SparkS w397090770 9年前 (2016-05-26) 14057℃ 0评论13喜欢
在过去Spark社区创建了Spark 2.0的技术预览版,经过几天的投票,目前该技术预览版今天正式公布。《Spark 2.0技术预览:更容易、更快速、更智能》文章中详细介绍了Spark 2.0给我们带来的新功能,总体上Spark 2.0提升了下面三点: 1. 对标准的SQL支持,统一DataFrame和Dataset API。现在已经可以运行TPC-DS所有的99个查询,这99个查 w397090770 9年前 (2016-05-25) 2645℃ 0评论3喜欢
Apache Kafka 0.10.0.0于美国时间2016年5月24日正式发布。Apache Kafka 0.10.0.0是Apache Kafka的主要版本,此版本带来了一系列的新特性和功能加强。本文将对此版本的重要点进行说明。Kafka StreamsKafka Streams在几个月前由Confluent Platform首先在其平台的技术预览中行提出,目前已经在Apache Kafka 0.10.0.0上可用了。Kafka Streams其实是一套类库,它使 w397090770 9年前 (2016-05-25) 12411℃ 0评论25喜欢
《Spark 2.0技术预览:更容易、更快速、更智能》文章介绍了Spark的三大新特性,本文是Reynold Xin在2016年5月5日的演讲,视频可以到这里看:http://go.databricks.com/apache-spark-2.0-presented-by-databricks-co-founder-reynold-xinPPT下载地址见下面。 w397090770 9年前 (2016-05-24) 3304℃ 0评论4喜欢
《Spark 2.0技术预览:更容易、更快速、更智能》文章中简单地介绍了Spark 2.0带来的新技术等。Spark 2.0是Apache Spark的下一个主要版本。此版本在架构抽象、API以及平台的类库方面带来了很大的变化,为该框架明年的发展方向奠定了方向,所以了解Spark 2.0的一些特性对我们能够使用它有着非常重要的作用。本博客将对Spark 2.0进行一 w397090770 9年前 (2016-05-24) 13097℃ 0评论26喜欢
《Spark 2.0技术预览:更容易、更快速、更智能》文章中简单地介绍了Spark 2.0带来的新技术等。Spark 2.0是Apache Spark的下一个主要版本。此版本在架构抽象、API以及平台的类库方面带来了很大的变化,为该框架明年的发展奠定了方向,所以了解Spark 2.0的一些特性对我们能够使用它有着非常重要的作用。本博客将对Spark 2.0进行一序列 w397090770 9年前 (2016-05-23) 22167℃ 0评论27喜欢
《Spark 2.0技术预览:更容易、更快速、更智能》文章中简单地介绍了Spark 2.0带来的新技术等。Spark 2.0是Apache Spark的下一个主要版本。此版本在架构抽象、API以及平台的类库方面带来了很大的变化,为该框架明年的发展方向奠定了方向,所以了解Spark 2.0的一些特性对我们能够使用它有着非常重要的作用。本博客将对Spark 2.0进行一 w397090770 9年前 (2016-05-19) 21008℃ 1评论32喜欢
ZooKeeper 支持某些特定的四字命令(The Four Letter Words)与其进行交互。它们大多是查询命令,用来获取 ZooKeeper 服务的当前状态及相关信息。用户在客户端可以通过 telnet 或 nc 向 ZooKeeper 提交相应的命令。 ZooKeeper 常用四字命令主要如下: ZooKeeper四字命令功能描述conf3.3.0版本引入的。打印出服务相关配置的详细信息。cons3.3.0 w397090770 9年前 (2016-05-18) 4272℃ 0评论5喜欢
《Spark性能优化:开发调优篇》《Spark性能优化:资源调优篇》《Spark性能优化:数据倾斜调优》《Spark性能优化:shuffle调优》shuffle调优调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO、序列化、网络数据传输等操作。因此,如果要让作业的性能更上一层楼,就有必要对sh w397090770 9年前 (2016-05-15) 22590℃ 2评论52喜欢
《Spark性能优化:开发调优篇》《Spark性能优化:资源调优篇》《Spark性能优化:数据倾斜调优》《Spark性能优化:shuffle调优》前言 继《Spark性能优化:开发调优篇》和《Spark性能优化:资源调优篇》讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析 w397090770 9年前 (2016-05-14) 15694℃ 0评论30喜欢