欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:1106
  2. 浏览总数:15,118,590
  3. 评论:4203
  4. 分类目录:125 个
  5. 注册用户数:7101
  6. 最后更新:2020年2月23日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
开发爱好者社区:
bigdata_ai

 分类:HDFS

Apache Hadoop 3.x 最新状态以及升级指南

Apache Hadoop 3.x 最新状态以及升级指南
本文来自 2019年9月23日至26日在纽约举办的 Strata Data Conference,分享者是来自 Cloudera 的 Wangda Tan 和 Wei-Chiu Chuang,会议页面 https://conferences.oreilly.com/strata/strata-ny-2019/public/schedule/detail/77506。请关注 过往记忆大数据 微信公众号,并在后台回复 hadoop_3 关键字获取本文的 PPT 下载地址。如果想及时了解Spark、Hadoop或者HBase相关的文章,

w397090770   3周前 (02-04) 167℃ 0评论1喜欢

字节跳动 EB 级 HDFS 实践

字节跳动 EB 级 HDFS 实践
HDFS 简介因为 HDFS 这样一个系统已经存在了非常长的时间,应用的场景已经非常成熟了,所以这部分我们会比较简单地介绍。HDFS 全名 Hadoop Distributed File System,是业界使用最广泛的开源分布式文件系统。原理和架构与 Google 的 GFS 基本一致。它的特点主要有以下几项:和本地文件系统一样的目录树视图Append Only 的写入(不支持

w397090770   2个月前 (01-10) 538℃ 0评论2喜欢

Hadoop 2.7 不停服升级到 3.2 在滴滴的实践

Hadoop 2.7 不停服升级到 3.2 在滴滴的实践
为什么要升级在2017年底, Hadoop3.0 发布了,到目前为止, Hadoop 发布的最新版本为3.2.1。在 Hadoop3 中有很多有用的新特性出现,如支持 ErasureCoding、多 NameNode、Standby NameNode read、DataNode Disk Balance、HDFS RBF 等等。除此之外,还有很多性能优化以及 BUG 修复。其中最吸引我们的就是 ErasureCoding 特性,数据可靠性保持不变的情况下可以降

w397090770   2个月前 (01-05) 501℃ 0评论3喜欢

史上最全的大数据学习资源(Awesome Big Data)

史上最全的大数据学习资源(Awesome Big Data)
为了让大家更好地学习交流,过往记忆大数据花了一个周末的时间把 Awesome Big Data 里近 600 个大数据相关的调度、存储、计算、数据库以及可视化等介绍全部翻译了一遍,供大家学习交流。关系型数据库管理系统MySQL 世界上最流行的开源数据库。PostgreSQL 世界上最先进的开源数据库。Oracle Database - 对象关系数据库管理系统。T

w397090770   5个月前 (09-23) 4723℃ 0评论18喜欢

Apache Hadoop 的 HDFS federation 前世今生(下)

Apache Hadoop 的 HDFS federation 前世今生(下)
在 《Apache Hadoop 的 HDFS federation 前世今生(上)》 已经介绍了 Hadoop 2.9.0 版本之前 HDFS federation 存在的问题,那么为了解决这个问题,社区采取了什么措施呢?HDFS Router-based FederationViewFs 方案虽然可以很好的解决文件命名空间问题,但是它的实现有以下几个问题:ViewFS 是基于客户端实现的,需要用户在客户端进行相关的配置,那

w397090770   7个月前 (07-26) 749℃ 0评论1喜欢

Apache Hadoop 的 HDFS Federation 前世今生(上)

Apache Hadoop 的 HDFS Federation 前世今生(上)
背景熟悉大数据的人应该都知道,HDFS 是一个分布式文件系统,它是基于谷歌的 GFS 思路实现的开源系统,它的设计目的就是提供一个高度容错性和高吞吐量的海量数据存储解决方案。在经典的 HDFS 架构中有2个 NameNode 和多个 DataNode 的,如下:如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop从

w397090770   7个月前 (07-25) 1079℃ 0评论2喜欢

HDFS 快照编程指南

HDFS 快照编程指南
HDFS 快照是从 Hadoop 2.1.0-beta 版本开始引入的新功能,详见 HDFS-2802。概述HDFS 快照(HDFS Snapshots)是文件系统在某个时间点的只读副本。可以在文件系统的子树或整个文件系统上创建快照。快照的常见用途主要包括数据备份,防止用户误操作和容灾恢复。HDFS 快照的实现非常高效:快照的创建非常迅速:除去 inode 的查找时间,

w397090770   1年前 (2018-12-02) 1246℃ 0评论3喜欢

如何从根源上解决 HDFS 小文件问题

如何从根源上解决 HDFS 小文件问题
我们知道,HDFS 被设计成存储大规模的数据集,我们可以在 HDFS 上存储 TB 甚至 PB 级别的海量数据。而这些数据的元数据(比如文件由哪些块组成、这些块分别存储在哪些节点上)全部都是由 NameNode 节点维护,为了达到高效的访问, NameNode 在启动的时候会将这些元数据全部加载到内存中。而 HDFS 中的每一个文件、目录以及文件块,

w397090770   1年前 (2018-10-09) 6314℃ 2评论29喜欢

HDFS 块和 Input Splits 的区别与联系(源码版)

HDFS 块和 Input Splits 的区别与联系(源码版)
在 《HDFS 块和 Input Splits 的区别与联系》 文章中介绍了HDFS 块和 Input Splits 的区别与联系,其中并没有涉及到源码级别的描述。为了补充这部分,这篇文章将列出相关的源码进行说明。看源码可能会比直接看文字容易理解,毕竟代码说明一切。为了简便起见,这里只描述 TextInputFormat 部分的读取逻辑,关于写 HDFS 块相关的代码请参

w397090770   2年前 (2018-05-16) 1710℃ 0评论19喜欢

HDFS 块和 Input Splits 的区别与联系

HDFS 块和 Input Splits 的区别与联系
相信大家都知道,HDFS 将文件按照一定大小的块进行切割,(我们可以通过 dfs.blocksize 参数来设置 HDFS 块的大小,在 Hadoop 2.x 上,默认的块大小为 128MB。)也就是说,如果一个文件大小大于 128MB,那么这个文件会被切割成很多块,这些块分别存储在不同的机器上。当我们启动一个 MapReduce 作业去处理这些数据的时候,程序会计算出文

w397090770   2年前 (2018-05-16) 1619℃ 4评论28喜欢