欢迎关注大数据技术架构与案例微信公众号:过往记忆大数据
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
过往记忆大数据
大数据技术博客公众号bigdata_ai
开发爱好者社区:
Java技术范

Apache Spark 3.0 第一个稳定版发布,终于可以在生产环境中使用啦!

Apache Spark 3.0.0 正式版是2020年6月18日发布的,其为我们带来大量新功能,很多功能加快了数据的计算速度。但是遗憾的是,这个版本并非稳定版。

不过就在昨天,Apache Spark 3.0.1 版本悄悄发布了(好像没看到邮件通知)!值得大家高兴的是,这个版本是稳定版,官方推荐所有 3.0 的用户升级到这个版本

Apache Spark 3.0 增加了很多令人兴奋的新特性,包括动态分区修剪(Dynamic Partition Pruning)、自适应查询执行(Adaptive Query Execution)、加速器感知调度(Accelerator-aware Scheduling)、支持 Catalog 的数据源API(Data Source API with Catalog Supports,参见 SPARK-31121)、SparkR 中的向量化(Vectorization in SparkR)、支持 Hadoop 3/JDK 11/Scala 2.12 等等。具体参见过往记忆大数据的 《历时近两年,Apache Spark 3.0.0 正式版终于发布了》 文章。

Apache Spark 3.0.0 正式版终于发布了
如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop

Apache Spark 3.0.1 Release Note:https://spark.apache.org/releases/spark-release-3-0-1.html
所有修改的 ISSUE 参见:https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315420&version=12347862
Apache Spark 3.0.1 下载地址:https://spark.apache.org/downloads.html

值得关注的修改

  • [SPARK-26905]: Revisit reserved/non-reserved keywords based on the ANSI SQL standard
  • [SPARK-31220]: repartition obeys spark.sql.adaptive.coalescePartitions.initialPartitionNum when spark.sql.adaptive.enabled
  • [SPARK-31703]: Changes made by SPARK-26985 break reading parquet files correctly in BigEndian architectures (AIX + LinuxPPC64)
  • [SPARK-31915]: Resolve the grouping column properly per the case sensitivity in grouped and cogrouped pandas UDFs
  • [SPARK-31923]: Event log cannot be generated when some internal accumulators use unexpected types
  • [SPARK-31935]: Hadoop file system config should be effective in data source options
  • [SPARK-31968]: write.partitionBy() creates duplicate subdirectories when user provides duplicate columns
  • [SPARK-31983]: Tables of structured streaming tab show wrong result for duration column
  • [SPARK-32003]: Shuffle files for lost executor are not unregistered if fetch failure occurs after executor is lost
  • [SPARK-32038]: Regression in handling NaN values in COUNT(DISTINCT)
  • [SPARK-32073]: Drop R < 3.5 support
  • [SPARK-32092]: CrossvalidatorModel does not save all submodels (it saves only 3)
  • [SPARK-32136]: Spark producing incorrect groupBy results when key is a struct with nullable properties
  • [SPARK-32148]: LEFT JOIN generating non-deterministic and unexpected result (regression in Spark 3.0)
  • [SPARK-32220]: Cartesian Product Hint cause data error
  • [SPARK-32310]: ML params default value parity
  • [SPARK-32339]: Improve MLlib BLAS native acceleration docs
  • [SPARK-32424]: Fix silent data change for timestamp parsing if overflow happens
  • [SPARK-32451]: Support Apache Arrow 1.0.0 in SparkR
  • [SPARK-32456]: Check the Distinct by assuming it as Aggregate for Structured Streaming
  • [SPARK-32608]: Script Transform DELIMIT value should be formatted
  • [SPARK-32646]: ORC predicate pushdown should work with case-insensitive analysis
  • [SPARK-32676]: Fix double caching in KMeans/BiKMeans

已知的问题

  • [SPARK-31511]: Make BytesToBytesMap iterator() thread-safe
  • [SPARK-32779]: Spark/Hive3 interaction potentially causes deadlock
  • [SPARK-32788]: non-partitioned table scan should not have partition filter
  • [SPARK-32810]: CSV/JSON data sources should avoid globbing paths when inferring schema
本博客文章除特别声明,全部都是原创!
转载本文请加上:转载自过往记忆(https://www.iteblog.com/)
本文链接: 【Apache Spark 3.0 第一个稳定版发布,终于可以在生产环境中使用啦!】(https://www.iteblog.com/archives/9872.html)
喜欢 (0)
分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!