在本博客的《Spark快速入门指南(Quick Start Spark)》文章中简单地介绍了如何通过Spark shell来快速地运用API。本文将介绍如何快速地利用Spark提供的API开发Standalone模式的应用程序。Spark支持三种程序语言的开发:Scala (利用SBT进行编译), Java (利用Maven进行编译)以及Python。下面我将分别用Scala、Java和Python开发同样功能的程序:
一、Scala版本:
程序如下:
package scala
/**
* User: 过往记忆
* Date: 14-6-10
* Time: 下午11:37
* bolg:
* 本文地址:/archives/1041
* 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货
* 过往记忆博客微信公共帐号:iteblog_hadoop
*/
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
object Test {
def main(args: Array[String]) {
val logFile = "file:///spark-bin-0.9.1/README.md"
val conf = new SparkConf().setAppName("Spark Application in Scala")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
val numBs = logData.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
}
为了编译这个文件,需要创建一个xxx.sbt文件,这个文件类似于pom.xml文件,这里我们创建一个scala.sbt文件,内容如下:
name := "Spark application in Scala" version := "1.0" scalaVersion := "2.10.4" libraryDependencies += "org.apache.spark" %% "spark-core" % "1.0.0" resolvers += "Akka Repository" at "http://repo.akka.io/releases/"
编译:
# sbt/sbt package [info] Done packaging. [success] Total time: 270 s, completed Jun 11, 2014 1:05:54 AM
二、Java版本
/**
* User: 过往记忆
* Date: 14-6-10
* Time: 下午11:37
* bolg:
* 本文地址:/archives/1041
* 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货
* 过往记忆博客微信公共帐号:iteblog_hadoop
*/
/* SimpleApp.java */
import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.Function;
public class SimpleApp {
public static void main(String[] args) {
String logFile = "file:///spark-bin-0.9.1/README.md";
SparkConf conf =new SparkConf().setAppName("Spark Application in Java");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> logData = sc.textFile(logFile).cache();
long numAs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("a"); }
}).count();
long numBs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("b"); }
}).count();
System.out.println("Lines with a: " + numAs +",lines with b: " + numBs);
}
}
本程序分别统计README.md文件中包含a和b的行数。本项目的pom.xml文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>spark</groupId>
<artifactId>spark</artifactId>
<version>1.0</version>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
</project>
利用Maven来编译这个工程:
# mvn install [INFO] ------------------------------------------------------------------------ [INFO] BUILD SUCCESS [INFO] ------------------------------------------------------------------------ [INFO] Total time: 5.815s [INFO] Finished at: Wed Jun 11 00:01:57 CST 2014 [INFO] Final Memory: 13M/32M [INFO] ------------------------------------------------------------------------
三、Python版本
#
# User: 过往记忆
# Date: 14-6-10
# Time: 下午11:37
# bolg:
# 本文地址:/archives/1041
# 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货
# 过往记忆博客微信公共帐号:iteblog_hadoop
#
from pyspark import SparkContext
logFile = "file:///spark-bin-0.9.1/README.md"
sc = SparkContext("local", "Spark Application in Python")
logData = sc.textFile(logFile).cache()
numAs = logData.filter(lambda s: 'a' in s).count()
numBs = logData.filter(lambda s: 'b' in s).count()
print "Lines with a: %i, lines with b: %i" % (numAs, numBs)
四、测试运行
本程序的程序环境是Spark 1.0.0,单机模式,测试如下:
1、测试Scala版本的程序
# bin/spark-submit --class "scala.Test" \
--master local[4] \
target/scala-2.10/simple-project_2.10-1.0.jar
14/06/11 01:07:53 INFO spark.SparkContext: Job finished:
count at Test.scala:18, took 0.019705 s
Lines with a: 62, Lines with b: 35
2、测试Java版本的程序
# bin/spark-submit --class "SimpleApp" \
--master local[4] \
target/spark-1.0-SNAPSHOT.jar
14/06/11 00:49:14 INFO spark.SparkContext: Job finished:
count at SimpleApp.java:22, took 0.019374 s
Lines with a: 62, lines with b: 35
3、测试Python版本的程序
# bin/spark-submit --master local[4] \
simple.py
Lines with a: 62, lines with b: 35
\本文地址:《Spark Standalone模式应用程序开发》:/archives/1041,过往记忆,大量关于Hadoop、Spark等个人原创技术博客
本博客文章除特别声明,全部都是原创!原创文章版权归过往记忆大数据(过往记忆)所有,未经许可不得转载。
本文链接: 【Spark Standalone模式应用程序开发】(https://www.iteblog.com/archives/1041.html)


打卡
谢谢分享!