欢迎关注Hadoop、Spark、Flink、Hive、Hbase、Flume等大数据资料分享微信公共账号:iteblog_hadoop
  1. 文章总数:961
  2. 浏览总数:11,480,594
  3. 评论:3873
  4. 分类目录:103 个
  5. 注册用户数:5841
  6. 最后更新:2018年10月17日
过往记忆博客公众号iteblog_hadoop
欢迎关注微信公众号:
iteblog_hadoop
大数据技术博客公众号bigdata_ai
大数据猿:
bigdata_ai

 分类:Storm

大规模数据处理的演化历程(2003-2018)

大规模数据处理的演化历程(2003-2018)
本文翻译自《Streaming System》最后一章《The Evolution of Large-Scale Data Processing》,在探讨流式系统方面本书是市面上难得一见的深度书籍,非常值得学习。大数据如果从 Google 对外发布 MapReduce 论文算起,已经前后跨越十五年,我打算在本文和你蜻蜓点水般一起浏览下大数据的发展史,我们从最开始 MapReduce 计算模型开始,一路走马观

w397090770   2周前 (10-08) 583℃ 0评论7喜欢

Storm和Spark Streaming框架对比

Storm和Spark Streaming框架对比
  Storm和Spark Streaming两个都是分布式流处理的开源框架。但是这两者之间的区别还是很大的,正如你将要在下文看到的。处理模型以及延迟  虽然两框架都提供了可扩展性(scalability)和可容错性(fault tolerance),但是它们的处理模型从根本上说是不一样的。Storm可以实现亚秒级时延的处理,而每次只处理一条event,而Spark Streaming

w397090770   4年前 (2015-03-12) 15310℃ 1评论5喜欢