
SQL Performance Improvements
At a Glance in Apache Spark 3.0
Kazuaki Ishizaki

IBM Research

About Me – Kazuaki Ishizaki

▪ Researcher at IBM Research – Tokyo

https://ibm.biz/ishizaki
– Compiler optimization, language runtime, and parallel processing

▪ Apache Spark committer from 2018/9 (SQL module)

▪ Work for IBM Java (Open J9, now) from 1996
– Technical lead for Just-in-time compiler for PowerPC

▪ ACM Distinguished Member

▪ SNS
– @kiszk

– https://www.slideshare.net/ishizaki/
2 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

https://ibm.biz/ishizaki

Spark 3.0

▪ The long wished-for release…
– More than 1.5 years passed after Spark 2.4 has been released

3 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Spark 3.0

▪ Four Categories of Major Changes for SQL

4 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Interactions with developers Dynamic optimizations

Catalyst improvements Infrastructure updates

When Spark 2.4 was released?

▪ The long wished-for release…
– More than 1.5 years passed after Spark 2.4 has been released

5 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

2018 November

What We Expected Last Year?

▪ The long wished-for release…
– More than 1.5 years passed after Spark 2.4 has been released

6 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Keynote at Spark+AI Summit 2019

2019 April

Spark 3.0 Looks Real

▪ The long wished-for release…
– More than 1.5 years passed after Spark 2.4 has been released

7 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Keynote at Spark+AI Summit 2019

2019 November

Spark 3.0 has been released!!

▪ The long wished-for release…
– More than 1.5 years passed after Spark 2.4 has been released

8 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Keynote at Spark+AI Summit 2019 (April, 2019)3.0.0 has released
early June, 2020

Community Worked for Spark 3.0 Release

▪ 3464 issues (as of June 8th, 2020)
– New features

– Improvements

– Bug fixes

9 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Source https://issues.apache.org/jira/projects/SPARK/versions/12339177

Many Many Changes for 1.5 years

▪ 3369 issues (as of May 15, 2020)
– Features

– Improvements

– Bug fixes

10 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Hard to understand what’s new
due to many many changes

Many Many Changes for 1.5 years

▪ 3369 issues (as of May 15, 2020)
– Features

– Improvements

– Bug fixes

11 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Hard to understand what’s new
due to many many changes

This session guides you to understand
what’s new for SQL performance

Seven Major Changes for SQL Performance

1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

12 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Seven Major Changes for SQL Performance

1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

13 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Interactions
with developers

Dynamic optimizations

Catalyst
improvements

Infrastructure updates

What is Important to Improve Performance?

▪ Understand how a query is optimized

14 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-27395

What is Important to Improve Performance?

▪ Understand how a query is optimized

15 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-27395

Easy to Read a Query Plan

Read a Query Plan

16 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-27395

“SELECT key, Max(val) FROM temp WHERE key > 0 GROUP BY key HAVING max(val) > 0”

From #24759

Not Easy to Read a Query Plan on Spark 2.4

▪ Not easy to understand how a query is optimized

17 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-27395

scala> val query = “SELECT key, Max(val) FROM temp WHERE key > 0 GROUP BY key HAVING max(val) > 0”
scala> sql(“EXPLAIN “ + query).show(false)

From #24759

Output is too long!!

!== Physical Plan ==
*(2) Project [key#2, max(val)#15]
+- *(2) Filter (isnotnull(max(val#3)#18) AND (max(val#3)#18 > 0))

+- *(2) HashAggregate(keys=[key#2], functions=[max(val#3)], output=[key#2, max(val)#15,
max(val#3)#18])

+- Exchange hashpartitioning(key#2, 200)
+- *(1) HashAggregate(keys=[key#2], functions=[partial_max(val#3)], output=[key#2,

max#21])
+- *(1) Project [key#2, val#3]

+- *(1) Filter (isnotnull(key#2) AND (key#2 > 0))
+- *(1) FileScan parquet default.temp[key#2,val#3] Batched: true,

DataFilters: [isnotnull(key#2), (key#2 > 0)], Format: Parquet, Location:
InMemoryFileIndex[file:/user/hive/warehouse/temp], PartitionFilters: [], PushedFilters:
[IsNotNull(key), GreaterThan(key,0)], ReadSchema: struct<key:int,val:int>

Easy to Read a Query Plan on Spark 3.0

▪ Show a query in a terse format with detail information

18 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-27395

!== Physical Plan ==
Project (8)
+- Filter (7)

+- HashAggregate (6)
+- Exchange (5)

+- HashAggregate (4)
+- Project (3)

+- Filter (2)
+- Scan parquet default.temp1 (1)

(1) Scan parquet default.temp [codegen id : 1]
Output: [key#2, val#3]

(2) Filter [codegen id : 1]
Input : [key#2, val#3]
Condition : (isnotnull(key#2) AND (key#2 > 0))

(3) Project [codegen id : 1]
Output : [key#2, val#3]
Input : [key#2, val#3]

(4) HashAggregate [codegen id : 1]
Input: [key#2, val#3]

(5) Exchange
Input: [key#2, max#11]

(6) HashAggregate [codegen id : 2]
Input: [key#2, max#11]

(7) Filter [codegen id : 2]
Input : [key#2, max(val)#5, max(val#3)#8]
Condition : (isnotnull(max(val#3)#8) AND
(max(val#3)#8 > 0))

(8) Project [codegen id : 2]
Output : [key#2, max(val)#5]
Input : [key#2, max(val)#5, max(val#3)#8]

scala> sql(“EXPLAIN FORMATTED “ + query).show(false)

Seven Major Changes for SQL Performance

1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

19 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Interactions
with developers

Only One Join Type Can be Used on Spark 2.4

▪

20 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-27225

Join type 2.4

Broadcast BROADCAST

Sort Merge X

Shuffle Hash X

Cartesian X

All of Join Type Can be Used for a Hint

▪

21 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-27225

Join type 2.4 3.0

Broadcast BROADCAST BROADCAST

Sort Merge X SHUFFLE_MERGE

Shuffle Hash X SHUFFLE_HASH

Cartesian X SHUFFLE_REPLICATE_NL

Examples

SELECT /*+ SHUFFLE_HASH(a, b) */ * FROM a, b
WHERE a.a1 = b.b1

val shuffleHashJoin = aDF.hint(“shuffle_hash”)
.join(bDF, aDF(“a1”) === bDF(“b1”))

Seven Major Changes for SQL Performance

1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

22 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Dynamic optimizations

Automatically Tune Parameters for Join and Reduce

▪ Three parameters by using runtime statistics information

(e.g. data size)
1. Set the number of reducers to avoid wasting memory and I/O resource

2. Select better join strategy to improve performance

3. Optimize skewed join to avoid imbalance workload

23 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-23128 & 30864

Yield 8x performance improvement of Q77 in TPC-DS
Source: Adaptive Query Execution: Speeding Up Spark SQL at Runtime

Without manual tuning properties run-by-run

Used Preset Number of Reduces on Spark 2.4

▪ The number of reducers is set based on the property
spark.sql.shuffle.partitions (default: 200)

24 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-23128 & 30864

One task includes five types to be grouped

Five reducers for five partitions

Reducer 0

Reducer 1

Reducer 2

Reducer 3

Reducer 4

Tune the Number of Reducers on Spark 3.0

▪ Select the number of reducers to meet the given target partition

size at each reducer

25 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-23128 & 30864

spark.sql.adaptive.enabled -> true (false in Spark 3.0)
spark.sql.adaptive.coalescePartitions.enabled -> true (false in Spark 3.0)

Three reducers for five partitions

Statically Selected Join Strategy on Spark 2.4

▪ Spark 2.4 decided sort merge join strategy using statically

available information (e.g. 100GB and 80GB)

26 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-23128 & 30864

Filter

Shuffle

Sort merge
Join

80GB

???

Sort

Scan table2

Shuffle

Scan table1

Sort

100GB

Dynamically Change Join Strategy on Spark 3.0

▪ Spark 3.0 dynamically select broadcast hash join strategy using

runtime information (e.g. 80MB)

27 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-23128 & 30864

Shuffle

Scan table1

Filter

ShuffleSort

Sort merge
Join

100GB 80GB

80MB

Sort

Scan table2

Shuffle

Scan table1

Filter

Broadcast

Broadcast
hash Join

Scan table2

spark.sql.adaptive.enabled -> true (false in Spark 3.0)

Skewed Join is Slow on Spark 2.4

▪ The join time is dominated by processing the largest partition

28 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-23128 & 30864

Table BTable A

Partition 2

Partition 0

Partition 1

Join table A and table B

Skewed Join is Faster on Spark 3.0

▪ The large partition is split into multiple partitions

29 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-23128 & 30864

Table BTable A

Partition 2

Partition 0

Partition 1

Join table A and table B

spark.sql.adaptive.enabled -> true (false in Spark 3.0)
spark.sql.adaptive.skewJoin.enabled-> true (false in Spark 3.0)

Partition 3
Split

Duplicate

Seven Major Changes for SQL Performance

1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

30 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Dynamic Partitioning Pruning

▪ Avoid to read unnecessary partitions in a join operation
– By using results of filter operations in another table

▪ Dynamic filter can avoid to read unnecessary partition

31 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-11150

Source: Dynamic Partition Pruning in Apache Spark

Yield 85x performance improvement of Q98 in TPC-DS 10TB

Naïve Broadcast Hash Join on Spark 2.4

▪ All of the data in Large table is read

32 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-11150

Broadcast

Table small
Table large

filter

Broadcast hash
join

FileScan

Prune Data with Dynamic Filter on Spark 3.0

▪ Large table can reduce the amount of data to be read

using pushdown with dynamic filter

33 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-11150

Broadcast

Table small
Table large

filter
FileScan with

pushdown

Broadcast hash
join

FileScan

Example of Dynamic Partitioning Pruning

34 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-11150

scala> spark.range(7777).selectExpr("id", "id AS key").write.partitionBy("key").saveAsTable("tableLarge")
scala> spark.range(77).selectExpr("id", "id AS key").write.partitionBy("key").saveAsTable("tableSmall")
scala> val query = "SELECT * FROM tableLarge JOIN tableSmall ON tableLarge.key = tableSmall.key AND tableSmall.id < 3"
scala> sql("EXPLAIN FORMATTED " + query).show(false)

|== Physical Plan ==
* BroadcastHashJoin Inner BuildRight (8)
:- * ColumnarToRow (2)
: +- Scan parquet default.tablelarge (1)
+- BroadcastExchange (7)

+- * Project (6)
+- * Filter (5)

+- * ColumnarToRow (4)
+- Scan parquet default.tablesmall (3)

(1) Scan parquet default.tablelarge
Output [2]: [id#19L, key#20L]
Batched: true
Location: InMemoryFileIndex [file:/home/ishizaki/Spark/300RC1/spark-3.0.0-bin-hadoop2.7/spark-
warehouse/tablelarge/key=0, ... 7776 entries]
PartitionFilters: [isnotnull(key#20L), dynamicpruningexpression(key#20L IN dynamicpruning#56)]
ReadSchema: struct<id:bigint>

Source: Quick Overview of Upcoming Spark 3.0

Seven Major Changes for SQL Performance

1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

35 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Catalyst
improvements

Nested Column Pruning on Spark 2.4

▪ Column pruning that read only necessary column for Parquet
– Can be applied to limited operations (e.g. LIMIT)

36 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-25603 & 25556

Source: #23964

Project Limit

col1 col2

_1 _2

Limited Nested Column Pruning on Spark 2.4

▪ Column pruning that read only necessary column for Parquet
– Can be applied to limited operations (e.g. LIMIT)

– Cannot be applied other operations (e.g. REPARTITION)

37 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-25603 & 25556

Source: #23964

Project Limit

col1 col2

_1 _2

Project Repartition

col1 col2

_1 _2 Project

Generalize Nested Column Pruning on Spark 3.0

▪ Nested column pruning can be applied to all operators
– e.g. LIMITS, REPARTITION, …

38 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-25603 & 25556

Project Repartition

col1 col2

_1 _2

Source: #23964

Example of Nested Column Pruning

▪ Parquet only reads col2._1, as shown in ReadSchema

39 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-25603 & 25556

== Physical Plan ==
Exchange RoundRobinPartitioning(1)
+- *(1) Project [col2#5._1 AS _1#11L]

+- *(1) FileScan parquet [col2#5] ..., PushedFilters: [], ReadSchema: struct<col2:struct<_1:bigint>>

scala> sql("SELECT col2._1 FROM (SELECT /*+ REPARTITION(1) */ col2 FROM temp)").explain

Source: #23964

scala> spark.range(1000).map(x => (x, (x, s"$x" * 10))).toDF("col1", "col2").write.parquet("/tmp/p")
scala> spark.read.parquet("/tmp/p").createOrReplaceTempView("temp")
scala> sql("SELECT col2._1 FROM (SELECT col2 FROM tp LIMIT 1000000)").explain

== Physical Plan ==
CollectLimit 1000000
+- *(1) Project [col2#22._1 AS _1#28L]

+- *(1) FileScan parquet [col2#22] ..., ReadSchema: struct<col2:struct<_1:bigint>>

LIMIT

Repartition

No Nested Column Pushdown on Spark 2.4

▪ Parquet cannot apply predication pushdown

40 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-25603 & 25556

scala> spark.range(1000).map(x => (x, (x, s"$x" * 10))).toDF("col1", "col2").write.parquet("/tmp/p")
scala> spark.read.parquet(“/tmp/p”).filter(“col2._1 = 100").explain

== Physical Plan ==
*(1) Project [col1#12L, col2#13]
+- *(1) Filter (isnotnull(col2#13) && (col2#13._1 = 100))

+- *(1) FileScan parquet [col1#12L,col2#13] ..., PushedFilters: [IsNotNull(nested)], ...

Spark 2.4

Project

col1 col2

_1 _2 Filter

Source: #28319
All data rows only if

col2._1=100

Nested Column Pushdown on Spark 3.0

▪ Parquet can apply pushdown filter and can read part of columns

41 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-25603 & 25556

scala> spark.range(1000).map(x => (x, (x, s"$x" * 10))).toDF("col1", "col2").write.parquet("/tmp/p")
scala> spark.read.parquet(“/tmp/p”).filter(“col2._1 = 100").explain

Spark 3.0
== Physical Plan ==
*(1) Project [col1#0L, col2#1]
+- *(1) Filter (isnotnull(col2#1) AND (col2#1._1 = 100))

+- FileScan parquet [col1#0L,col2#1] ..., DataFilters: [isnotnull(col2#1), (col2#1.x = 100)],
..., PushedFilters: [IsNotNull(col2), EqualTo(col2._1,100)], ...

Project

col1 col2

_1 _2 Filter

Source: #28319
chunks including
col2._1=100

rows only if
col2._1=100

Seven Major Changes for SQL Performance

1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

42 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Complex Aggregation is Slow on Spark 2.4

▪ A complex query is not compiled to native code

43 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-21870

Not good performance of Q66 in TPC-DS

Source: #20695

How SQL is Translated to native code

▪ In Spark, Catalyst translates a given query to Java code

▪ HotSpot compiler in OpenJDK translates Java code into native

code

44 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-21870

Catalyst
Java code
generationSQL

Spark

HotSpot

How SQL is Translated to native code

▪ In Spark, Catalyst translates a given query to Java code

▪ HotSpot compiler in OpenJDK gives up generating native code

for more than 8000 Java bytecode instruction per method

45 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-21870

Catalyst
Java code
generationSQL

Spark

HotSpot

Making Aggregation Java Code Small

▪ In Spark, Catalyst translates a given query to Java code

▪ HotSpot compiler in OpenJDK gives up generating native code

for more than 8000 Java bytecode instruction per method

46 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-21870

Catalyst splits a large Java method into small ones
to allow HotSpot to generate native code

Example of Small Aggregation Code

▪ Average function (100 rows) for 50 columns

47 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-21870

scala> val numCols = 50
scala> val colExprs = (0 until numCols).map { i => s"id AS col$i" }
scala> spark.range(100).selectExpr(colExprs: _*).createOrReplaceTempView("temp”)
scala> val aggExprs = (0 until numCols).map { I => s”AVG(col$i)" }
scala> val query = s"SELECT ${aggExprs.mkString(", ")} FROM temp“
scala> import org.apache.spark.sql.execution.debug._
scala> sql(query).debugCodegen()

Found 2 WholeStageCodegen subtrees.
== Subtree 1 / 2 (maxMethodCodeSize:3679; maxConstantPoolSize:1107(1.69% used); numInnerClasses:0) ==
...
== Subtree 2 / 2 (maxMethodCodeSize:5581; maxConstantPoolSize:882(1.35% used); numInnerClasses:0) ==

Source: PR #20965

Example of Small Aggregation Code

▪ Average function (100 rows) for 50 columns

48 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-21870

scala> val numCols = 50
scala> val colExprs = (0 until numCols).map { i => s"id AS col$i" }
scala> spark.range(100).selectExpr(colExprs: _*).createOrReplaceTempView("temp”)
scala> val aggExprs = (0 until numCols).map { I => s”AVG(col$i)" }
scala> val query = s"SELECT ${aggExprs.mkString(", ")} FROM temp“
scala> import org.apache.spark.sql.execution.debug._
scala> sql(query).debugCodegen()

Found 2 WholeStageCodegen subtrees.
== Subtree 1 / 2 (maxMethodCodeSize:3679; maxConstantPoolSize:1107(1.69% used); numInnerClasses:0) ==
...
== Subtree 2 / 2 (maxMethodCodeSize:5581; maxConstantPoolSize:882(1.35% used); numInnerClasses:0) ==
...

scala> sql("SET spark.sql.codegen.aggregate.splitAggregateFunc.enabled=false")
scala> sql(query).debugCodegen()

Found 2 WholeStageCodegen subtrees.
== Subtree 1 / 2 (maxMethodCodeSize:8917; maxConstantPoolSize:957(1.46% used); numInnerClasses:0) ==
...
== Subtree 2 / 2 (maxMethodCodeSize:9862; maxConstantPoolSize:728(1.11% used); numInnerClasses:0) ==
...

Disable this feature

Source: PR #20965

Seven Major Changes for SQL Performance

1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

49 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Infrastructure updates

Support New Versions of Languages

▪ Java 11 (the latest Long-Term-Support of OpenJDK from 2018 to

2026)
– Further optimizations in HotSpot compiler

– Improved G1GC (for large heap)

– Experimental new ZGC (low latency)

▪ Scala 2.12 (released on 2016 Nov.)
– Newly designed for leveraging Java 8 new features

50 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki SPARK-24417 & 25956

NOTE: Other class libraries are also updated

Takeaway

▪ Spark 3.0 improves SQL application performance
1. New EXPLAIN format

2. All type of join hints

3. Adaptive query execution

4. Dynamic partitioning pruning

5. Enhanced nested column pruning & pushdown

6. Improved aggregation code generation

7. New Scala and Java

51 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Please visit https://www.slideshare.net/ishizaki/ tomorrow
if you want to see this slide again

https://www.slideshare.net/ishizaki/

Resources

▪ Introducing Apache Spark 3.0: Now available in Databricks

Runtime 7.0
– https://databricks.com/jp/blog/2020/06/18/introducing-apache-spark-3-0-

now-available-in-databricks-runtime-7-0.html

▪ Now on Databricks: A Technical Preview of Databricks Runtime 7

Including a Preview of Apache Spark 3.0
– https://databricks.com/blog/2020/05/13/now-on-databricks-a-technical-

preview-of-databricks-runtime-7-including-a-preview-of-apache-spark-3-

0.html

▪ Quick Overview of Upcoming Spark 3.0 (in Japanese)
– https://www.slideshare.net/maropu0804/quick-overview-of-upcoming-

spark-3052 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

Resources…

▪ Madhukar’s Blog
– https://blog.madhukaraphatak.com/

▪ Adaptive Query Execution: Speeding Up Spark SQL at Runtime
– https://databricks.com/blog/2020/05/29/adaptive-query-execution-

speeding-up-spark-sql-at-runtime.html

▪ Dynamic Partition Pruning in Apache Spark
– https://databricks.com/session_eu19/dynamic-partition-pruning-in-

apache-spark

53 SQL performance improvements at a glance in Apache Spark 3.0 - Kazuaki Ishizaki

