D s b i GitEBimdERER
Se%ﬂﬁw{%t:hoﬁo? Spark K#IEEZ - https://www.iteblog.com

ARXFIHGItERBS , |mE&E T

Git FHGSEER

TILTILITI LI SI I LA SIS TTLIS SIS I LT II SIS LIS SIS II SIS TSI TSI T LTSI TSI LTI TSI IS TAI SIS TSI LSS T SS TSI LTI S AT IS AT TSI TSI I IS SIA AL TSI TL SIS PSS SIS IS Y.

SRR AXERE

e sz

BEERXASE

SIS I TSR TTII TSI EE ST ETT TG TG TR TG TG TER T EEETTE T TG TEE TG G T T TG EETTEE TG ETE TS TG ARG E TGS T T TET T EG SR ETITTETEETETLS

Git Cheat Sheet <CN> (Version ©.1) # 2012/10/26 -- by @riku < riku@gitcafe.com / http://riku.wowubuntu.com >

INRBRET
fZSpark, Hadoopzk&EHbasetBXHXE , DX EHEAENKS : iteblog_hadoop

NB

git init

or

git clone url

176

https://www.iteblog.com/archives/1922.html
/pic/git.jpg

s b ok GitE A TIRER
Spl*lﬁ!aﬂﬁw%ﬁtjioj%or?, Spark K#IEEZ - https://www.iteblog.com

=1

git config --global color.ui true

git config --global push.default current

git config --global core.editor vim

git config --global user.name "John Doe"

git config --global user.email foo@citrix.com
git config --global diff.tool meld

ERAH ST

See the list of all local branches
git branch

Switch to existing local branch
git checkout branchname

Checkout current branch into a new branch, named new-branch-name
git checkout -b new-branch-name

Merge branch-name into the current branch
git merge branchname

Merge branch without fast forwarding. This is what pull requests do.
It helps to preserve history of the changes as relavant to that branch
It's an advanced feature, but try it out with GUI to see the difference
between the regular merge and merge --no-ff

git merge --no--ff branchname

Soft branch delete, will complain if the branch is not merged
git branch -d branchname

Hard branch delete, will not complain about nothing. Like rm -rf in bash
git branch -D branchname

ERERID X

See all commits
git log

2/6

X AT GitERMmIRER
Spl*lﬁ!aﬂﬁw%ﬁtjioj%o? Spark K#IEEZ - https://www.iteblog.com

Pretty commit view, you can customize it as much as you want.
#Just google it 0 O
git log --pretty=format:"%h %s" --graph

See what you worked on in the past week
git log --author='Alex' --after={1.week.ago} --pretty=oneline --abbrev-commit

See only changes made on this branch (assuming it was branched form master branch)
git log --no-merges master..

See status of your current git branch.
Often will have advice on command that you need to run
git status

Short view of status. Helpful for seeing things at a glance
git status -s

Add modified file to be commited(aka stage the file)
git add filename

Add all modified files to be commited(aka stage all files)
gitadd .

Add only text files, etc.
git add "*.txt'

Tell git not to track file anymore
git rm filename

Record changes to git. Default editor will open for a commit message.
(Visible via git log)

Once files are commited, they are history.

git commit

A short hand for commiting files and writing a commit message via one command
git commit -m 'Some commit message'

Changing the history 0 O If you want to change your previous commit,

you can, if you haven't pushed it yet to a remote repo

Simply make new changes, add them via git add, and run the following command.
Past commit will be ammended.

git commit --amend

3/6

X AT GitERMmIRER
Spl*lﬁ!aﬂﬁw%ﬁtjioj%o? Spark K#IEEZ - https://www.iteblog.com

SEN

Unstage pending changes, the changes will still remain on file system
git reset

Unstage pending changes, and reset files to pre-commit state. If
git reset --hard HEAD

Go back to some time in history, on the current branch
git reset tag
git reset <commit-hash>

Save current changes, without having to commit them to repo
git stash

And later return those changes
git stash pop

Return file to it's previous version, if it hasn’t been staged yet.
Otherwise use git reset filename or git reset --hard filename
git checkout filename

FLAEE Y

See current changes, that have not been staged yet.
Good thing to check before running git add
git diff

See current changes, that have not been commited yet (including staged changes)

git diff HEAD

Compare current branch to some other branch
git diff branch-name

Same as diff, but opens changes via difftool that you have configured
-d tells it to open it in a directory mode, instead of having to open

each file one at a time.

git difftool -d

See only changes made in the current branch (compared to master branch)

Helpful when working on a stand alone branch for a while
git difftool -d master..

4/6

X AT GitERMmIRER
Spl*lﬁ!aﬂﬁw%ﬁtjioj%o? Spark K#IEEZ - https://www.iteblog.com

See only the file names that has changed in current branch
git diff --no-commit-id --name-only --no-merges origin/master...

Similar to above, but see statistics on what files have changed and how
git diff --stat #Your diff condition

EREED

See list of remote repos available. If you did git clone,
you'll have at least one named "origin"
git remote

Detailed view of remote repos, with their git urls
git remote -v

Add a new remote. L.e. origin if it is not set
git remote add origin <https://some-git-remote-url>

Push current branch to remote branch (usually with the same name)
called upstream branch
git push

If a remote branch is not set up as an upstream, you can make it so
The -u tells Git to remember the parameters
git push -u origin master

Otherwise you can manually specify remote and branch to use every time
git push origin branchname

Just like pushing, you can get the latest updates from remote.
By defaul Git will try to pull from "origin" and upstream branch

git pull

Or you can tell git to pull a specific branch
git pull origin branchname

Git pull, is actually a short hand for two command.

Telling git to first fetch changes from a remote branch
And then to merge them into current branch

git fetch && git merge origin/remote-branch-name

If you want to update history of remote branches, you can fetch and purge

5/6

X AP GitEBimdERER
Se%ﬁﬁwi#t:EGJ%o? Spark K#IEEZ - https://www.iteblog.com

git fetch -p
To see the list of remote branches

-a stands for all
git branch -a

[RX 5% © Git Cheat Sheet

AEENERFHIER , M2 !
REINEMRFIFEICIZAREIE (THEILZ) S |, REF IR SHEEH,
gk (1 ()

6/6

https://www.iteblog.com/redirect.php?url=aHR0cHM6Ly9naXN0LmdpdGh1Yi5jb20vYWtyYXMxNC8zZDI0MmQ4MGFmODM4OGViY2E2MA==&article=true
https://www.iteblog.com/
http://www.tcpdf.org

